Purpose The purpose of this paper is to present an original study of industrial inductors with different air-gap materials in order to reduce the vibration and noise of inductors. Acoustic comfort is an increasingly important factor at the design stage of industrial inductors associated to converters. In addition, power converters in the railway domain are more and more compact and powerful. Design/methodology/approach Experiments, simulations and test devices were used to determine the main physical phenomena that generate the undesirable audible noise. Electric and vibratory measurements (modal and operational analysis) were compared with the numerical calculations. PWM and sinusoidal supply were taken into account and different prototypes with different materials in the air-gap were built. Findings This study analyzes and details the origin of the electromagnetic noise due to the vertical mode, in order to reduce the vibration and noise of inductors. A detailed analysis using finite element simulation and experimental measurements of free-free mode or forced mode under electrical excitation was conducted to interpret the vibrations of the structure. In addition, in order to observe trends and the impact of magnetostriction effect, the authors propose a simplified model. Practical implications Electric and vibratory measurements (modal and operational analysis) are compared with the numerical calculations. Originality/value This paper gives a response about the origin of the noise with different experimental measurements. Changing the air-gap material is beneficial for the deflection of the inductor. However, it has been presented that, following the shape of the inductor, it is beneficial to reduce or increase the stiffness of the material depending on the column height. For a fixed Young’s modulus air-gap, a ratio Column height/air-gap thickness exists, which makes it possible to cancel the deflection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.