A three-site mean-field extended microkinetic model was developed based on ab initio DFT calculations from the literature, in order to simulate the conversion of syngas (H2/CO/CO2) to methanol on Cu...
Due to the high acid, oxygen and water contents of fast pyrolysis oil, it requires the improvement of its fuel properties by further upgrading, such as catalytic hydrodeoxygenation (HDO). In this study, Nb2O5 was evaluated as a support of Pd-based catalysts for HDO of fast pyrolysis oil. A Pd/SiO2 catalyst was used as a reference. Additionally, the impact of iron as a promoter in two different loadings was investigated. The activity of the synthesized catalysts was evaluated in terms of H2 uptake and composition of the upgraded products (gas phase, upgraded oil and aqueous phase) through elemental analysis, Karl Fischer titration, GC-MS/FID and 1H-NMR. In comparison to SiO2, due to its acid sites, Nb2O5 enhanced the catalyst activity towards hydrogenolysis and hydrogenation, confirmed by the increased water formation during HDO and a higher content of hydrogen and aliphatic protons in the upgraded oil. Consequently, the upgraded oil with Nb2O5 had a lower average molecular weight and was therefore less viscous than the oil obtained with SiO2. When applied as a promoter, Fe enhanced hydrogenation and hydrogenolysis, although it slightly decreased the acidity of the support, owing to its oxophilic nature, leading to the highest deoxygenation degree (42.5 wt.%) and the highest product HHV (28.2 MJ/kg).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.