X-ray diffraction (XRD) and Mn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy were combined to elaborate a structural model for phyllomanganates (layer-type Mn oxide) lacking 3D ordering (turbostratic stacking). These techniques were applied to a sample produced by a common soil and freshwater bacterium (Pseudomonas putida) and to two synthetic analogs, δ-MnO 2 and "acid birnessite", obtained by the reduction of potassium permanganate with MnCl 2 and HCl, respectively. To interpret the diffraction and spectroscopic data, we applied an XRD simulation technique utilized previously for wellcrystallized birnessite varieties, complementing this approach with single-scattering-path simulations of the Mn K-edge EXAFS spectra. Our structural analyses revealed that all three Mn oxides have an hexagonal layer symmetry with layers comprising edge-sharing Mn 4+ O 6 octahedra and cation vacancies, but no layer Mn 3+ O 6 octahedra. The proportion of cation vacancies in the layers ranged from 6 to 17 %, these vacancies being charge-compensated in the interlayer by protons, alkali metals, and Mn atoms, in amounts that vary with the phyllomanganate species and synthesis medium. Both vacancies and interlayer Mn were
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.