Among the few proteins of the eukaryotic nucleolus that have been characterized, four proteins, nucleolin, fibrillarin, SSB1 and NSR1, possess a common structural motif, the GAR domain, which is rich in glycine and arginine residues. In order to examine whether the presence of this domain is characteristic of a family of nucleolar proteins, we investigated whether other yeast genes encode proteins containing GAR domains. We report here the sequence and the characterization of a new yeast gene, GAR1, which encodes a protein of 205 residues containing two GAR domains. GAR1 is a non‐ribosomal protein, localized in the yeast nucleolus, which is essential for cell growth. Immunoprecipitation with anti‐GAR1 antibodies shows that GAR1 is associated with a subset of snoRNAs, including snR10 and snR30. Depletion of GAR1 by expression under the control of a regulated GAL promoter, impairs processing of the 35S primary transcript of pre‐rRNA and prevents synthesis of 18S rRNA. GAR1 is thus the fifth member of a family of nucleolar proteins containing GAR domains, and is involved in rRNA metabolism.
Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world’s coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp) to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families (containing 5% of Symbiodinium genes) that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identify extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding of Symbiodinium biology and the coral-algal symbiosis.
Nucleolin (also called C23) is the major nucleolar protein of exponentially growing eukaryotic cells. It is found associated with intranucleolar chromatin and preribosomal particles. Through use of a polyclonal antiserum, nucleolin cDNA clones were isolated from a Chinese hamster ovary cell library constructed in the expression vector Xgtll. The isolated cDNAs encoded a polypeptide containing 679 residues of the 713 amino acids of nucleolin. The amino acid sequence presents several unusual features: in particular, repetitive sequences are found at both ends of the molecule. A repeat, Hy-Thr-Pro-Hy-Lys-Lys-Hy-Hy, in which Hy is a nonpolar residue, is found six times in the NH2-end proximal portion, followed by three acidic stretches containing 25, 25, and 33 glutamic acid or aspartic acid residues. Four potential phosphorylation sites (serines) are also observed in this region. The COOH-terminal proximal portion of the protein carries a glycine-rich region with fairly regularly interspersed phenylalanine and dimethylarginine residues. The two terminal portions of the molecule exhibit unique potential secondary structures: a-helix (NH2 terminus) and extended (COOH terminus). The central region exhibits alternating hydrophobic and hydrophilic stretches. Five potential N glycosylation sites are detected. The structure of this protein may reflect two functions in preribosome biogenesis: interaction with chromatin (NH2 terminus) and with preribosomes (COOH terminus).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.