The type length chosen for floating-point numbers (e.g. 32 bits or 64 bits) may have an impact on the execution time, especially on SIMD (Single Instruction Multiple Data) units. Furthermore optimizing the types used in a numerical simulation causes a reduction of the data volume that is possibly transferred. In this paper we present PROMISE, a tool that makes it possible to optimize the numerical types in a program by taking into account the requested accuracy on the computed results. With PROMISE the numerical quality of results is verified using DSA (Discrete Stochastic Arithmetic) that enables one to estimate roundoff errors. The search for a suitable type configuration is performed with a reasonable complexity thanks to the delta debugging algorithm. The PROMISE tool has been successfully tested on programs implementing several numerical algorithms including linear system solving and also on an industrial code that solves the neutron transport equations.
a b s t r a c tA reactivity computation consists of computing the highest eigenvalue of a generalized eigenvalue problem, for which an inverse power algorithm is commonly used. Very fine modelizations are difficult to treat for our sequential solver, based on the simplified transport equations, in terms of memory consumption and computational time.A first implementation of a Lagrangian based domain decomposition method brings to a poor parallel efficiency because of an increase in the power iterations [1]. In order to obtain a high parallel efficiency, we improve the parallelization scheme by changing the location of the loop over the subdomains in the overall algorithm and by benefiting from the characteristics of the Raviart-Thomas finite element. The new parallel algorithm still allows us to locally adapt the numerical scheme (mesh, finite element order). However, it can be significantly optimized for the matching grid case. The good behavior of the new parallelization scheme is demonstrated for the matching grid case on several hundreds of nodes for computations based on a pin-by-pin discretization.
Quantifying errors and losses due to the use of Floating-point (FP) calculations in industrial scientific computing codes is an important part of the Verification, Validation, and Uncertainty Quantification process. Stochastic Arithmetic is one way to model and estimate FP losses of accuracy, which scales well to large, industrial codes. It exists in different flavors, such as CESTAC or MCA, implemented in various tools such as CADNA, Verificarlo, or Verrou. These methodologies and tools are based on the idea that FP losses of accuracy can be modeled via randomness. Therefore, they share the same need to perform a statistical analysis of programs results to estimate the significance of the results. In this article, we propose a framework to perform a solid statistical analysis of Stochastic Arithmetic. This framework unifies all existing definitions of the number of significant digits (CESTAC and MCA), and also proposes a new quantity of interest: the number of digits contributing to the accuracy of the results. Sound confidence intervals are provided for all estimators, both in the case of normally distributed results, and in the general case. The use of this framework is demonstrated by two case studies of industrial codes: Europlexus and code_aster.
The simulation of the neutron transport inside a nuclear reactor leads to the computation of the lowest eigen pair of a simplified transport operator. Whereas the sequential solution at our disposal today is really efficient, we are not able to run some industrial cases due to the memory consumption and the computational time. This problem brings us to study parallel strategies.In order to re-use an important part of the solver and to bypass some limitations of conforming cartesian meshes, we propose a non overlapping domain decomposition based on the introduction of Lagrange multipliers. The method performs well on up to 100 processors for an industrial test case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.