We discuss combining physical experiments with machine computations and introduce a form of analogue-digital (AD) Turing machine. We examine in detail a case study where an experimental procedure based on Newtonian kinematics is combined with a class of Turing machines. Three forms of AD machine are studied, in which physical parameters can be set exactly and approximately. Using non-uniform complexity theory, and some probability, we prove theorems that show that these machines can compute more than classical Turing machines.
Earlier, to explore the idea of combining physical experiments with algorithms, we introduced a new form of analogue-digital (AD) Turing machine. We examined in detail a case study where an experimental procedure, based on Newtonian kinematics, is used as an oracle with classes of Turing machines. The physical cost of oracle calls was counted and three forms of AD queries were studied, in which physical parameters can be set exactly and approximately. Here, in this sequel, we complete the classification of the computational power of these AD Turing machines and determine precisely what they can compute, using non-uniform complexity classes and probabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.