This guideline is written primarily for doctors and nurses working in dialysis units and related areas of medicine in the UK, and is an update of a previous version written in 2009. It aims to provide guidance on how to look after patients and how to run dialysis units, and provides standards which units should in general aim to achieve. We would not advise patients to interpret the guideline as a rulebook, but perhaps to answer the question: “what does good quality haemodialysis look like?”The guideline is split into sections: each begins with a few statements which are graded by strength (1 is a firm recommendation, 2 is more like a sensible suggestion), and the type of research available to back up the statement, ranging from A (good quality trials so we are pretty sure this is right) to D (more like the opinion of experts than known for sure). After the statements there is a short summary explaining why we think this, often including a discussion of some of the most helpful research. There is then a list of the most important medical articles so that you can read further if you want to – most of this is freely available online, at least in summary form.A few notes on the individual sections: This section is about how much dialysis a patient should have. The effectiveness of dialysis varies between patients because of differences in body size and age etc., so different people need different amounts, and this section gives guidance on what defines “enough” dialysis and how to make sure each person is getting that. Quite a bit of this section is very technical, for example, the term “eKt/V” is often used: this is a calculation based on blood tests before and after dialysis, which measures the effectiveness of a single dialysis session in a particular patient.This section deals with “non-standard” dialysis, which basically means anything other than 3 times per week. For example, a few people need 4 or more sessions per week to keep healthy, and some people are fine with only 2 sessions per week – this is usually people who are older, or those who have only just started dialysis. Special considerations for children and pregnant patients are also covered here.This section deals with membranes (the type of “filter” used in the dialysis machine) and “HDF” (haemodiafiltration) which is a more complex kind of dialysis which some doctors think is better. Studies are still being done, but at the moment we think it’s as good as but not better than regular dialysis.This section deals with fluid removal during dialysis sessions: how to remove enough fluid without causing cramps and low blood pressure. Amongst other recommendations we advise close collaboration with patients over this.This section deals with dialysate, which is the fluid used to “pull” toxins out of the blood (it is sometimes called the “bath”). The level of things like potassium in the dialysate is important, otherwise too much or too little may be removed. There is a section on dialysate buffer (bicarbonate) and also a section on phosphate, which occasional...
Introduction Malnutrition is common in patients with acute kidney injury (AKI), particularly in those requiring renal replacement therapy (RRT). Use of RRT removes metabolic waste products and toxins, but it will inevitably also remove useful molecules such as micronutrients, which might aggravate malnutrition. The RRT modalities vary in mechanism of solute removal; for example, intermittent hemodialysis (IHD) uses diffusion, continuous veno-venous hemofiltration (CVVH) uses convection, and sustained low-efficiency diafiltration (SLEDf) uses a combination of these. Methods We assessed micronutrient and amino acid losses in 3 different RRT modalities in patients with AKI (IHD, n = 27; SLEDf, n = 12; CVVH, n = 21) after correction for dialysis dose and plasma concentrations. Results Total losses were affected by modality; generally CVVH >> SLEDf > IHD (e.g., amino acid loss was 18.69 ± 3.04, 8.21 ± 4.07, and 5.13 ± 3.1 g, respectively; P < 0.001). Loss of specific trace elements (e.g., copper and zinc) during RRT was marked, with considerable heterogeneity between RRT types (e.g., +849 and +2325 μg/l lost during SLEDf vs. IHD, respectively), whereas effluent losses of copper and zinc decreased during CVVH (effect size relative to IHD, −3167 and −1442 μg/l, respectively). B vitamins were undetectable in effluent, but experimental modeling estimated 40% to 60% loss within the first 15 minutes of RRT. Conclusion Micronutrient and amino acid losses are marked during RRT in patients with AKI, with variation between RRT modalities and micronutrients.
Background A comprehensive evidence base is needed to support recommendations for the dietetic management of adults with chronic kidney disease (CKD). The present study aimed to determine the effect of dietary interventions with dietitian involvement on nutritional status, well‐being, kidney risk factors and clinical outcomes in adults with CKD. Methods Cochrane Central Register of Controlled Trials, CINAHL, MEDLINE, PsycINFO and EMBASE.com were searched from January 2000 to November 2019. Intentional weight loss and single nutrient studies were excluded. Risk of bias was assessed using the Cochrane risk‐of‐bias tool. Effectiveness was summarised using the mean difference between groups for each outcome per study. Results Twelve controlled trials (1906 participants) were included. High fruit and vegetable intake, as well as a multidisciplinary hospital and community care programme, slowed the decline in glomerular filtration rate in adults with stage 3–4 CKD. Interventions addressing nutrition‐related barriers increased protein and energy intake in haemodialysis patients. A Mediterranean diet and a diet with high n‐3 polyunsaturated fatty acids improved the lipid profile in kidney transplant recipients. Conclusions A limited number of studies suggest benefits as a result of dietary interventions that are delivered by dietitians and focus on diet quality. We did not identify any studies that focussed on our primary outcome of nutritional status or studies that examined the timing or frequency of the nutritional assessment. This review emphasises the need for a wider body of high‐quality evidence to support recommendations on what and how dietetic interventions are delivered by dietitians for adults with CKD.
In this article, Bruno Mafrici, author and editor, outlines some of the changes in the fifth edition of the Pocket Guide to Clinical Nutrition and how this will impact renal dietetic practice
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.