Dap160/Intersectin is a multidomain adaptor protein that colocalizes with endocytic machinery in the periactive zone at the Drosophila NMJ. We have generated severe loss-of-function mutations that eliminate Dap160 protein from the NMJ. dap160 mutant synapses have decreased levels of essential endocytic proteins, including dynamin, endophilin, synaptojanin, and AP180, while other markers of the active zone and periactive zone are generally unaltered. Functional analyses demonstrate that dap160 mutant synapses are unable to sustain high-frequency transmitter release, show impaired FM4-64 loading, and show a dramatic increase in presynaptic quantal size consistent with defects in synaptic vesicle recycling. The dap160 mutant synapse is grossly malformed with abundant, highly ramified, small synaptic boutons. We present a model in which Dap160 scaffolds both endocytic machinery and essential synaptic signaling systems to the periactive zone to coordinately control structural and functional synapse development.
Rab8, POSH, and TAK1 regulate synaptic growth responses, which suggests that recycling endosomes are key compartments for synaptic growth regulation in neurodegenerative processes.
We show that a subset of sound-detecting Johnston's Organ neurons (JONs) in Drosophila melanogaster, which express the transcription factors Engrailed (En) and Invected (Inv), form mixed electrical and chemical synaptic inputs onto the giant fiber (GF) dendrite. These synaptic connections are detected by trans-synaptic Neurobiotin (NB) transfer and by colocalization of Bruchpilot-short puncta. We then show that misexpressing En postmitotically in a second subset of sound-responsive JONs causes them to form ectopic electrical and chemical synapses with the GF, in turn causing that postsynaptic neuron to redistribute its dendritic branches into the vicinity of these afferents. We also introduce a simple electrophysiological recording paradigm for quantifying the presynaptic and postsynaptic electrical activity at this synapse, by measuring the extracellular sound-evoked potentials (SEPs) from the antennal nerve while monitoring the likelihood of the GF firing an action potential in response to simultaneous subthreshold sound and voltage stimuli. Ectopic presynaptic expression of En strengthens the synaptic connection, consistent with there being more synaptic contacts formed. Finally, RNAimediated knockdown of En and Inv in postmitotic neurons reduces SEP amplitude but also reduces synaptic strength at the JON-GF synapse. Overall, these results suggest that En and Inv in JONs regulate both neuronal excitability and synaptic connectivity.
In a large-scale screening effort, we identified the gene gooseberry (gsb) as being necessary for synaptic homeostasis at the Drosophila neuromuscular junction. The gsb gene encodes a pair-rule transcription factor that participates in embryonic neuronal cell fate specification. Here, we define a new postembryonic role for gooseberry. We show that gsb becomes widely expressed in the postembryonic CNS, including within mature motoneurons. Loss of gsb does not alter neuromuscular growth, morphology, or the distribution of essential synaptic proteins. However, gsb function is required postembryonically for the sustained expression of synaptic homeostasis. In GluRIIA mutant animals, miniature EPSP (mEPSP) amplitudes are significantly decreased, and there is a compensatory homeostatic increase in presynaptic release that restores normal muscle excitation. Loss of gsb significantly impairs the homeostatic increase in presynaptic release in the GluRIIA mutant. Interestingly, gsb is not required for the rapid induction of synaptic homeostasis. Furthermore, gsb seems to be specifically involved in the mechanisms responsible for a homeostatic increase in presynaptic release, since it is not required for the homeostatic decrease in presynaptic release observed following an increase in mEPSP amplitude. Finally, Gsb has been shown to antagonize Wingless signaling during embryonic fate specification, and we present initial evidence that this activity is conserved during synaptic homeostasis. Thus, we have identified a gene ( gsb) that distinguishes between rapid induction versus sustained expression of synaptic homeostasis and distinguishes between the mechanisms responsible for homeostatic increase versus decrease in synaptic vesicle release.
The transcription factor Engrailed (En) controls the topography of axonal projections by regulating the expression of cell-adhesion molecules [1] [2] [3] [4] but it is not known whether it also controls the choice of individual synaptic target cells. In the cercal sensory system of the larval cockroach (Periplaneta americana), small numbers of identified wind-sensitive sensory neurons form highly specific synaptic connections with 14 identified giant interneurons [5] [6], and target-cell choice is independent of the pattern of axonal projections [6]. En is a putative positional determinant in the array of cercal sensory neurons [7]. In the present study, double-stranded RNA (dsRNA) interference [8] was used to abolish En expression. This treatment changed the axonal arborisation and synaptic outputs of an identified En-positive sensory neuron so that it came to resemble a nearby En-negative cell, which was itself unaffected. We thus demonstrate directly that En controls synaptic choice, as well as axon projections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.