Despite the great attention devoted to the study of phase oscillators on complex networks in the last two decades, it remains unclear whether scale-free networks exhibit a nonzero critical coupling strength for the onset of synchronization in the thermodynamic limit. Here, we systematically compare predictions from the heterogeneous degree mean-field (HMF) and the quenched mean-field (QMF) approaches to extensive numerical simulations on large networks. We provide compelling evidence that the critical coupling vanishes as the number of oscillators increases for scale-free networks characterized by a power-law degree distribution with an exponent 2 < γ ≤ 3, in line with what has been observed for other dynamical processes in such networks. For γ > 3, we show that the critical coupling remains finite, in agreement with HMF calculations and highlight phenomenological differences between critical properties of phase oscillators and epidemic models on scale-free networks. Finally, we also discuss at length a key choice when studying synchronization phenomena in complex networks, namely, how to normalize the coupling between oscillators.
In this paper, we investigated the possibility of using the magnetic Laplacian to characterize directed networks. We address the problem of characterization of network models and perform the inference of the parameters used to generate these networks under analysis. Many interesting results are obtained, including the finding that the community structure is related to rotational symmetry in the spectral measurements for a type of stochastic block model. Due the hermiticity property of the magnetic Laplacian we show here how to scale our approach to larger networks containing hundreds of thousands of nodes using the Kernel Polynomial Method (KPM), a method commonly used in condensed matter physics. Using a combination of KPM with the Wasserstein metric, we show how we can measure distances between networks, even when these networks are directed, large, and have different sizes, a hard problem that cannot be tackled by previous methods presented in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.