As camera networks have become more ubiquitous over the past decade, the research interest in video management has shifted to analytics on multi-camera networks. This includes performing tasks such as object detection, attribute identification, and vehicle/person tracking across different cameras without overlap. Current frameworks for management are designed for multi-camera networks in a closed dataset environment where there is limited variability in cameras and characteristics of the surveillance environment are well known. Furthermore, current frameworks are designed for offline analytics with guidance from human operators for forensic applications. This paper presents a teamed classifier framework for video analytics in heterogeneous many-camera networks with adversarial conditions such as multi-scale, multi-resolution cameras capturing the environment with varying occlusion, blur, and orientations. We describe an implementation for vehicle tracking and vehicle re-identification (re-id), where we implement a zero-shot learning (ZSL) system that performs automated tracking of all vehicles all the time. Our evaluations on VeRi-776 and Cars196 show the teamed classifier framework is robust to adversarial conditions, extensible to changing video characteristics such as new vehicle types/brands and new cameras, and offers real-time performance compared to current offline video analytics approaches.
evoluído continuamente para atender às demandas por sistemas cada vez mais complexos tanto no domínio de processos de negócio quanto no campo dos processos científicos. Não obstante, as abordagens tradicionais ainda são incapazes de prover uma integração simples e direta entre a modelagem e a implementação de tais sistemas. As abordagens formais (e.g. Álgebras de Processos e Redes de Petri) são suficientes para a especificação de sistemas que possam ser formalmente verificados, no entanto sua implementação é difícil e não padronizada. A notação BPMN, largamente empregada como ferramenta de modelagem de processos de negócio, apesar de simples e funcional, não aborda de forma criteriosa aspectos importantes de implementação. Por outro lado, WS-BPEL é uma linguagem desenvolvida apenas para controle de execução de processos de negócio, negligenciando a modelagem. Além do mais, nenhuma dessas abordagens é suficientemente adequada para tratar estratégias adaptativas, as quais implicam em mudanças estruturais recorrentes no sistema de software. Nesse contexto, com base na abordagem WED-flow, este trabalho apresenta a WED-SQL: uma linguagem intermediária declarativa, específica de domínio (DSL), e com apoio transacional para a modelagem e implementação de PAIS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.