The surface phonon-polaritons contribution to the thermal conductivity of a nano thin film of silicon dioxide is investigated based on the Maxwell equations and the Boltzmann transport equation. It is shown that: (1) a small difference between the permittivities of the substrate and superstrate of the film can generate giant propagation lengths and therefore remarkably enhances its thermal conductivity with respect to values obtained for a freestanding one. (2) The propagation of surface phonon-polaritons is present in a broad band of frequencies and exhibits its largest propagation lengths at the frequency where the absorption of energy is minimal. (3) The increase of the thermal conductivity of the film as its thickness decreases is higher when it is deposited on potassium bromide instead of being suspended in air. The difference in the thermal conductivity for these two systems increases with increasing temperature and reducing the film thickness. A thermal conductivity as high as 2.5 W/m K is obtained for a 30 nm-thick thin film at room temperature, which is about 1.8 times larger than its bulk phonon value. The obtained results show that the propagation of surface phonon-polaritons has the potential not only to offset the reduction of the phonon thermal conductivity of a nano thin film, when its sizes are scaled down, but also to enhance it, by choosing properly the permittivity of its substrate. V C 2013 American Institute of Physics. [http://dx.
The low-energy cluster beam deposition technique (LECBD) is applied to produce cluster assembled films with hitherto unknown nanostructured morphologies and properties. Neutral clusters having the very low energy gained in the supersonic expansion at the exit of the inert gas condensation-type source are deposited without fragmentation upon impact on the substrate. Depending on the deposition conditions (nature, size and flux of incident clusters, nature and temperature of the substrate, vacuum conditions), granular nanostructures resulting from the diffusion and coalescence of supported clusters are obtained with materials of any type (covalent or metallic). A critical size for coalescence limits the supported grain size and, finally, highly porous thick films growing by random stacking of nanoparticles are obtained. A recent model developed by combining several dynamical processes simultaneously occurring on the substrate (deposition - diffusion - aggregation, DDA) is used to simulate the cluster assembled film morphology in good agreement with the experimental observations. Examples of novel materials obtained by LECBD are presented to illustrate the interesting potentialities of the technique. In the case of covalent materials such as carbon and silicon, 'amorphon'-type disordered structures, different from the conventional amorphous structures (a-C and a-Si), are obtained with some unique properties. With transition metal (Fe, Co and Ni) cluster assembled films, a specific magnetic behaviour, resulting from the competition between the intrinsic properties of the grains (magnetocrystalline anisotropy) and the interactions between grains, is observed. Also, films of clusters embedded in various co-deposited matrices are produced in order to control the interactions between grains via the matrix materials (insulating, conducting ...). Interesting optical properties (from metallic clusters in ) or giant magnetoresistance effects (from Co clusters in silver) are reported for such systems, emphasizing the future role of LECBD in various fields of applications such as optical and optoelectronic nanostructures, magnetic and magneto-optic nanostructures and quantum devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.