The Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission will carry into space the Ocean Color Instrument (OCI), a spectrometer measuring at 5 nm spectral resolution in the ultraviolet (UV) to near infrared (NIR) with additional spectral bands in the shortwave infrared (SWIR), and two multi-angle polarimeters that will overlap the OCI spectral range and spatial coverage, i. e., the Spectrometer for Planetary Exploration (SPEXone) and the Hyper-Angular Rainbow Polarimeter (HARP2). These instruments, especially when used in synergy, have great potential for improving estimates of water reflectance in the post Earth Observing System (EOS) era. Extending the topof-atmosphere (TOA) observations to the UV, where aerosol absorption is effective, adding spectral bands in the SWIR, where even the most turbid waters are black and sensitivity to the aerosol coarse mode is higher than at shorter wavelengths, and measuring in the oxygen A-band to estimate aerosol altitude will enable greater accuracy in atmospheric correction for ocean color science. The multi-angular and polarized measurements, sensitive to aerosol properties (e.g., size distribution, index of refraction), can further help to identify or constrain the aerosol model, or to retrieve directly water reflectance. Algorithms that exploit the new capabilities are presented, and their ability to improve accuracy is discussed. They embrace a modern, adapted heritage two-step algorithm and alternative schemes (deterministic, statistical) that aim at inverting the TOA signal in a single step. These schemes, by the nature of their construction, their robustness, their generalization properties, and their ability Frouin et al. Atmospheric Correction of Ocean-Color Imagery to associate uncertainties, are expected to become the new standard in the future. A strategy for atmospheric correction is presented that ensures continuity and consistency with past and present ocean-color missions while enabling full exploitation of the new dimensions and possibilities. Despite the major improvements anticipated with the PACE instruments, gaps/issues remain to be filled/tackled. They include dealing properly with whitecaps, taking into account Earth-curvature effects, correcting for adjacency effects, accounting for the coupling between scattering and absorption, modeling accurately water reflectance, and acquiring a sufficiently representative dataset of water reflectance in the UV to SWIR. Dedicated efforts, experimental and theoretical, are in order to gather the necessary information and rectify inadequacies. Ideas and solutions are put forward to address the unresolved issues. Thanks to its design and characteristics, the PACE mission will mark the beginning of a new era of unprecedented accuracy in ocean-color radiometry from space.
The non-parametric estimation of the regression function of a real-valued random variable Y on a random object X valued in a closed Riemannian manifold M is considered. A regression estimator which generalizes kernel regression estimators on Euclidean sample spaces is introduced. Under classical assumptions on the kernel and the bandwidth sequence, the asymptotic bias and variance are obtained, and the estimator is shown to converge at the same L 2 -rate as kernel regression estimators on Euclidean spaces.
Despite a substantial literature on nonparametric two-sample goodness-of-fit testing in arbitrary dimensions spanning decades, there is no mention there of any curse of dimensionality. Only more recently Ramdas et al. [25] have discussed this issue in the context of kernel methods by showing that their performance degrades with the dimension even when the underlying distributions are isotropic Gaussians. We take a minimax perspective and follow in the footsteps of Ingster [16] to derive the minimax rate in arbitrary dimension when the discrepancy is measured in the L 2 metric. That rate is revealed to be nonparametric and exhibit a prototypical curse of dimensionality. We further extend Ingster's work to show that the chi-squared test achieves the minimax rate. Moreover, we show that the test can be made to work when the distributions have support of low intrinsic dimension. Finally, inspired by Ingster [18], we consider a multiscale version of the chi-square test which can adapt to unknown smoothness and/or unknown intrinsic dimensionality without much loss in power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.