In this work, we are concerned with hierarchically hyperbolic spaces and hierarchically hyperbolic groups. Our main result is a wide generalization of a combination theorem of Behrstock, Hagen, and Sisto. In particular, as a consequence, we show that any finite graph product of hierarchically hyperbolic groups is again a hierarchically hyperbolic group, thereby answering [6, Question D] posed by Behrstock, Hagen, and Sisto. In order to operate in such a general setting, we establish a number of structural results for hierarchically hyperbolic spaces and hieromorphisms (that is, morphisms between such spaces), and we introduce two new notions for hierarchical hyperbolicity, that is concreteness and the intersection property, proving that they are satisfied in all known examples.
In this work, we are concerned with hierarchically hyperbolic spaces and hierarchically hyperbolic groups. Our main result is a wide generalization of a combination theorem of Behrstock, Hagen, and Sisto. In particular, as a consequence, we show that any finite graph product of hierarchically hyperbolic groups is again a hierarchically hyperbolic group, thereby answering [6, Question D] posed by Behrstock, Hagen, and Sisto. In order to operate in such a general setting, we establish a number of structural results for hierarchically hyperbolic spaces and hieromorphisms (that is, morphisms between such spaces), and we introduce two new notions for hierarchical hyperbolicity, that is
concreteness
and the
intersection property
, proving that they are satisfied in all known examples.
Let G be a graph of hyperbolic groups with 2-ended edge groups. We show that G is hierarchically hyperbolic if and only if G has no distorted infinite cyclic subgroup. More precisely, we show that G is hierarchically hyperbolic if and only if G does not contain certain quotients of Baumslag-Solitar groups. As a consequence, we obtain several new results about this class, such as quadratic isoperimetric inequality and finite asymptotic dimension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.