Recently, a large body of evidences indicates the existence in the mitochondrial matrix of foci that contain different proteins involved in mitochondrial RNA metabolism. Some of these proteins have a pentatricopeptide repeat motif that constitutes their RNA-binding structures. Here we report that MSC6, a mitochondrial pentatricopeptide protein of unknown function, is a multi copy suppressor of mutations in QRS1/HER2 a component of the trimeric complex that catalyzes the transamidation of glutamyl-tRNAQ to glutaminyl-tRNAQ. This is an essential step in mitochondrial translation because of the lack of a specific mitochondrial aminoacyl glutaminyl-tRNA synthetase. MSC6 over-expression did not abolish translation of an aberrant variant form of Cox2p detected in QRS1/HER2 mutants, arguing against a suppression mechanism that bypasses Qrs1p function. A slight decrement of the mitochondrial translation capacity as well as diminished growth on respiratory carbon sources media for respiratory activity was observed in the msc6 null mutant. Additionally, the msc6 null mutant did not display any impairment in RNA transcription, processing or turnover. We concluded that Msc6p is a mitochondrial matrix protein and further studies are required to indicate the specific function of Msc6p in mitochondrial translation.
The tobacco calmodulin-like protein rgs-CaM is involved in host defense against virus and is reported to possess an associated RNA silencing suppressor activity. Rgs-CaM is also believed to act as an antiviral factor by interacting and targeting viral silencing suppressors for autophagic degradation. Despite these functional data, calcium interplay in the modulation of rgs-CaM is still poorly understood. Here we show that rgs-CaM displays a prevalent alpha-helical conformation and possesses three functional Ca-binding sites. Using computational modeling and molecular dynamics simulation, we demonstrate that Ca binding to rgs-CaM triggers expansion of its tertiary structure with reorientation of alpha-helices within the EF-hands. This conformational change leads to the exposure of a large negatively charged region that may be implicated in the electrostatic interactions between rgs-CaM and viral suppressors. Moreover, the k values obtained for Ca binding to the three functional sites are not within the affinity range of a typical Ca sensor.
Mitochondrial translation normally requires formylation of the initiator tRNA‐met, a reaction catalyzed by the enzyme formyltransferase, Fmt1p and MTFMT in Saccharomyces cerevisiae and human mitochondria, respectively. Yeast fmt1 mutants devoid of Fmt1p, however, can synthesize all mitochondrial gene products by initiating translation with a non‐formylated methionyl‐tRNA. Yeast synthetic respiratory‐deficient fmt1 mutants have uncovered several factors suggested to play a role in translation initiation with non‐formylated methionyl‐tRNA. Here, we present evidence that Msc6p, a member of the pentatricopeptide repeat (PPR) motif family, is another essential factor for mitochondrial translation in fmt1 mutants. The PPR motif is characteristic of RNA‐binding proteins found in chloroplasts and plant and fungal mitochondria, and is generally involved in RNA stability and transport. Moreover, in the present study, we show that the respiratory deficiency of fmt1msc6 double mutants can be rescued by overexpression of the yeast mitochondrial initiation factor mIF‐2, encoded by IFM1. The role of Msc6p in translational initiation is further supported by pull‐down assays showing that it transiently interacts with mIF‐2. Altogether, our data indicate that Msc6p is an important factor in mitochondrial translation with an auxiliary function related to the mIF‐2‐dependent formation of the initiation complex.
Gastric cancer (GC) is the fifth most common type of cancer worldwide with high incidences in Asia, Central, and South American countries. This patchy distribution means that GC studies are neglected by large research centers from developed countries. The need for further understanding of this complex disease, including the local importance of epidemiological factors and the rich ancestral admixture found in Brazil, stimulated the implementation of the GE4GAC project. GE4GAC aims to embrace epidemiological, clinical, molecular and microbiological data from Brazilian controls and patients with malignant and pre-malignant gastric disease. In this letter, we summarize the main goals of the project, including subject and sample accrual and current findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.