Rotordynamic instability due to fluid flow in seals is a well known phenomenon that can occur in pumps as well as in steam turbines and air compressors. While analysis methods using bulk-flow equations are computationally efficient and can predict dynamic properties fairly well for short seals, they often lack accuracy in cases of seals with complex geometry or with large aspect ratios (L/D above 1.0). This paper presents the linearized rotordynamic coefficients for a liquid seal with large aspect ratio subjected to incompressible turbulent flow. The fluid-induced forces acting on the rotor are calculated by means of a three-dimensional computational fluid dynamics (3D-CFD) analysis, and are then expressed in terms of equivalent linearized stiffness, damping, and fluid inertia coefficients. For comparison, the seal dynamic coefficients were calculated using two other codes: one developed with the bulk flow method and one based on the finite difference method. The three sets of dynamic coefficients calculated in this study were used then to predict the rotor dynamic behavior of an industrial pump. These estimations were then compared to the vibration characteristic measured during the pump shop test, results indicating that the closest agreement was achieved utilizing the CFD generated coefficients. The results of rotor dynamic analysis using the coefficients derived from CFD approach, improved the prediction of both damped natural frequency and damping factor for the first mode, showing substantially smaller damping factor which is consistent with the experimentally observed instability of the rotor-bearing system. As result of continuously increasing computational power, it is believed that the CFD approach for calculating fluid excitation forces will become the standard in industry.
Annular labyrinth seals often have a destabilizing effect on pump rotordynamics due to the large cross-coupled forces generated when the fluid is squeezed by an oscillating rotor. In this study, several novel groove geometries are investigated for their effect on the rotordynamic coefficients of the labyrinth seal. The groove cavity geometry of a baseline 267 mm balance drum labyrinth seal with a clearance of 0.305 mm and 20 equally spaced groove cavities was optimized for minimum leakage. From the pool of possible groove designs analyzed, nine test cases were selected for maximum or minimum leakage and for a variety of groove cavity shapes. The rotordynamic coefficients were calculated for these cases using a hybrid computational fluid dynamics (CFD) bulk-flow method. The rotordynamic coefficients obtained by this method were then used with a rotordynamic model of the entire pump to determine the overall stability. Results show that labyrinth seal’s groove shape can be optimized to generate lower leakage rates, while the effects on dynamic properties are only minimally changed. If the seal dynamic response needs to be modified in addition to targeting a lower leakage rate, for instance, to exhibit increased damping values, then the leakage rate and the damping coefficient need to be set as objective functions in the optimization loop.
The conventionally-designed first-stage impeller of a high-energy, two-stage 19MW seawater injection pump, running at 4950 rpm and generating 1500m of head at a flow rate of 1.05 m3/s was seriously damaged by cavitation erosion in the first two months of operation. The impeller was redesigned by reshaping the blades in the region near the leading edges so as to reduce the inception cavitation number. This impeller has been running for more than a year, and the cavitation erosion rate is predicted to be low enough for it to last 40,000 hours. However, a prominent tone at blade passing frequency appeared with the new impeller, which interacts more effectively with the distorted inflow from the side-suction approach passage. Acoustic analysis of both single- and two-phase unsteady RANS CFD solutions corroborate the presence of this tone, which had not been observed when the pump operated with the original, conventional impeller.
Annular labyrinth seals often have a destabilizing effect on pump rotordynamics due to the large cross-coupled forces generated when the fluid is squeezed by an oscillating rotor. In this study several novel groove geometries are investigated for their effect on the rotordynamic coefficients of the labyrinth seal. The groove cavity geometry of a baseline 267 mm balance drum labyrinth seal with a clearance of 0.305 mm and 20 equally spaced groove cavities were optimized for minimum leakage. From the pool of possible groove designs analyzed, nine test cases were selected for maximum or minimum leakage and for a variety of groove cavity shapes. The rotordynamic coefficients were calculated for these cases using a hybrid CFD-bulk flow method. The rotordynamic coefficients obtained by this method were then used with a rotordynamic model of the entire pump to determine the overall stability. Results show that labyrinth seal’s groove shape can be optimized to generate lower leakage rates, while the effects on dynamic properties are only minimally changed. If the seal dynamic response needs to be modified in addition to targeting a lower leakage rate, for instance to exhibit increased damping values, then the leakage rate and the damping coefficient need to be set as objective functions in the optimization loop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.