In this paper, we propose a new algorithm for error-correcting subgraph isomorphism detection from a set of model graphs to an unknown input graph. The algorithm is based on a compact representation of the model graphs. This representation is derived from the set of model graphs in an off-line preprocessing step. The main advantage of the proposed representation is that common subgraphs of different model graphs are represented only once. Therefore, at run time, given an unknown input graph, the computational effort of matching the common subgraphs for each model graph onto the input graph is done only once. Consequently, the new algorithm is only sublinearly dependent on the number of model graphs. Furthermore, the new algorithm can be combined with a future cost estimation method that greatly improves its run-time performance.
AbstractÐGraphs are a powerful and universal data structure useful in various subfields of science and engineering. In this paper, we propose a new algorithm for subgraph isomorphism detection from a set of a priori known model graphs to an input graph that is given online. The new approach is based on a compact representation of the model graphs that is computed offline. Subgraphs that appear multiple times within the same or within different model graphs are represented only once, thus reducing the computational effort to detect them in an input graph. In the extreme case where all model graphs are highly similar, the run-time of the new algorithm becomes independent of the number of model graphs. Both a theoretical complexity analysis and practical experiments characterizing the performance of the new approach will be given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.