In both Boussinesq and non-Boussinesq cases the Green's function of internal gravity waves is calculated, exactly for monochromatic waves and asymptotically for impulsive waves. From its differentiation the pressure and velocity fields generated by a point source are deduced. by the same method the Boussinesq monochromatic and impulsive waves radiated by a pulsating sphere are investigated.Boussinesq monochromatic waves of frequency ω < N are confined between characteristic cones θ = arccos(ω/N) tangent to the source region (N being the buoyancy frequency and θ the observation angle from the vertical). In that zone the point source model is inadequate. For the sphere an explicit form is given for the waves, which describes their conical 1/r½ radial decay and their transverse phase variations.Impulsive waves comprise gravity and buoyancy waves, whose separation process is non-Boussinesq and follows the arrival of an Airy wave. As time t elapses, inside the torus of vertical axis and horizontal radius 2Nt/β for gravity waves and inside the circumscribing cylinder for buoyancy waves, both components become Boussinesq and have wavelengths negligible compared with the scale height 2/β of the stratification. Then, gravity waves are plane propagating waves of frequency N cos θ, and buoyancy waves are radial oscillations of the fluid at frequency N; for the latter, initially propagating waves comparable with gravity waves, the horizontal phase variations have vanished and the amplitude has become insignificant as the Boussinesq zone has been entered. In this zone, outside the torus of vertical axis and horizontal radius Nta, a sphere of radius a [Lt ] 2/β is compact compared with the wavelength of the dominant gravity waves. Inside the torus gravity waves vanish by destructive interference. For the remaining buoyancy oscillations the sphere is compact outside the vertical cylinder circumscribing it, whereas the fluid is quiescent inside this cylinder.
The Green's function method is applied to the generation of internal gravity waves by a moving point mass source. Arbitrary motion of a source of arbitrary time dependence is treated using the impulsive Green's function, while ‘classical’ approaches of uniform motion of a steady or oscillatory source are recovered using the monochromatic Green's function. Waves have locally the structure of impulsive waves, emitted at the retarded time tr, and having propagated with the group velocity; at each position and time an implicit equation defines tr, in terms of which the waves are written. A source both oscillating and moving generates two systems of waves, with respectively positive and negative frequencies, and when oscillations vanish these systems merge into one.Three particular cases are considered: the uniform horizontal and vertical motions of a steady source, and the uniform horizontal motion of an oscillatory source. Waves spread downstream of the steady source. For the oscillatory source they can extend both upstream and downstream, depending on the ratio of the source frequency to the buoyancy frequency, and are contained inside conical wavefronts, parts of which are caustics. For horizontal motion, moreover, the steady analysis (based on the monochromatic Green's function) reveals the presence of two insignificant contributions overlooked by the unsteady analysis (based on the impulsive Green's function), but which for an extended source may become of the same order as the main contribution. Among those is an upstream columnar disturbance associated with blocking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.