BPH/2J mice are a genetic model of hypertension which were selectively bred for elevated blood pressure (BP) in the 1970s alongside a normotensive strain (BPN/3J).1 Recent studies suggest that the hypertension in BPH/2J mice is caused by enhanced activation of the sympathetic nervous system (SNS) because ganglion blockade causes a greater depressor response in BPH/2J mice compared with BPN/3J controls. 2,3 Importantly, cardiovascular regulatory forebrain regions within the hypothalamus and amygdala display markedly greater neuronal activity in BPH/2J compared with BPN/3J mice during the dark-active period of the 24-hour light cycle.2 Furthermore, lesions of the medial amygdala reduced the hypertension and SNS overactivity in BPH/2J mice. 4 Thus the central nervous system seems to play a crucial role in driving the sympathetically mediated hypertension in this model.A gene array approach has been used to identify differential expression of genes in the hypothalamus between BPH/2J and BPN/3J mice. 5,6 An important finding was that expression of the orexin precursor gene (hcrt) in BPH/2J mice was more than double that of normotensive mice in early and established hypertension. Thus, hcrt could potentially contribute to the development and maintenance of BPH/2J hypertension.5 Furthermore, BPH/2J mice have ≈4-fold greater expression of the hcrt gene in the hypothalamus during the dark-active period compared with light period when mice are predominantly inactive or asleep. 6 Characteristics of the BPH/2J mouse strain, such as high BP, tachycardia, greater locomotor activity, overactivity of the SNS, 2 and exaggerated cardiovascular reactivity to stressful stimuli, 7 could all be reflective of a greater activity of the orexinergic neurons. Indeed, orexin is capable of increasing BP, heart rate (HR), and SNS activity.8 Orexinergic neurons originate in the hypothalamus and project to a wide range of brain regions, but in terms of sympathetic control of BP, the Abstract-BPH/2J mice are a genetic model of hypertension associated with an overactive sympathetic nervous system.Orexin is a neuropeptide which influences sympathetic activity and blood pressure. Orexin precursor mRNA expression is greater in hypothalamic tissue of BPH/2J compared with normotensive BPN/3J mice. To determine whether enhanced orexinergic signaling contributes to the hypertension, BPH/2J and BPN/3J mice were preimplanted with radiotelemetry probes to compare blood pressure 1 hour before and 5 hours after administration of almorexant, an orexin receptor antagonist. Mid frequency mean arterial pressure power and the depressor response to ganglion blockade were also used as indicators of sympathetic nervous system activity. Administration of almorexant at 100 (IP) and 300 mg/ kg (oral) in BPH/2J mice during the dark-active period (2 hours after lights off) markedly reduced blood pressure (−16.1±1.6 and −11.0±1.1 mm Hg, respectively; P<0.001 compared with vehicle). However, when almorexant (100 mg/ kg, IP) was administered during the light-inactive pe...
New Findings r What is the central question of this study?Blockade of orexin receptors reduces blood pressure in spontaneously hypertensive rats (SHRs) but not in normotensive Wistar-Kyoto (WKY) rats, suggesting that upregulation of orexin signalling underlies the hypertensive phenotype of the SHR. However, it is not known what causes this upregulation. r What is the main finding and its importance?Using orexin immunolabelling, we show that SHRs have 20% more orexin neurons than normotensive WKY and Wistar rats in the medial hypothalamus, which is a good match to their blood pressure phenotype. In contrast, there is no such match for the orexin neurons of the lateral hypothalamus. Essential hypertension may be linked to an increase in orexin neurons in the medial hypothalamus.The neuropeptide orexin contributes to the regulation of blood pressure as part of its role in the control of arousal during wakefulness and motivated behaviour (including responses to psychological stress). Recent work shows that pharmacological blockade of orexin receptors reduces blood pressure in spontaneously hypertensive rats (SHRs) but not in normotensive Wistar-Kyoto (WKY) rats. It is not clear why orexin signalling is upregulated in the SHR, but one possibility is that these animals have more orexin neurons than their normotensive WKY and Wistar relatives. To test this possibility, SHRs, WKY and Wistar male rats (6-16 weeks old) were killed, perfused and their brains sectioned and immunolabelled for orexin A. Labelled neurons were plotted and counted in the six best labelled hemisections (120 µm apart) of each brain. There were significantly more orexin neurons (+20%) in the medial hypothalamus (medial to fornix) of SHRs compared with WKY and Wistar rats (126 ± 4 versus 106 ± 5 and 104 ± 5 per hemisection, respectively, P < 0.05), which matches well the blood pressure phenotypes. In contrast, counts in the lateral hypothalamus did not match the blood pressure phenotypes (69 ± 2 versus 50 ± 3 and 76 ± 4, respectively). The results support the idea that orexin signalling is upregulated in the SHR and suggest that this is due, at least in part, to a greater number of orexin neurons in the medial hypothalamus. These medial orexin neurons, which are also involved in hyperarousal and stress responses, may contribute to the development of essential hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.