Metallo beta-lactamase enzymes confer antibiotic resistance to bacteria by catalyzing the hydrolysis of beta-lactam antibiotics. This relatively new form of resistance is spreading unchallenged as there is a current lack of potent and selective inhibitors of metallo beta-lactamases. Reported here are the crystal structures of the native IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor, 2-[5-(1-tetrazolylmethyl)thien-3-yl]-N-[2-(mercaptomethyl)-4 -(phenylb utyrylglycine)]. The structures were determined by molecular replacement, and refined to 3.1 A (native) and 2.0 A (complex) resolution. Binding of the inhibitor in the active site induces a conformational change that results in closing of the flap and transforms the active site groove into a tunnel-shaped cavity enclosing 83% of the solvent accessible surface area of the inhibitor. The inhibitor binds in the active site through interactions with residues that are conserved among metallo beta-lactamases; the inhibitor's carboxylate group interacts with Lys161, and the main chain amide nitrogen of Asn167. In the "oxyanion hole", the amide carbonyl oxygen of the inhibitor interacts through a water molecule with the side chain of Asn167, the inhibitor's thiolate bridges the two Zn(II) ions in the active site displacing the bridging water, and the phenylbutyryl side chain binds in a hydrophobic pocket (S1) at the base of the flap. The flap is displaced 2.9 A compared to the unbound structure, allowing Trp28 to interact edge-to-face with the inhibitor's thiophene ring. The similarities between this inhibitor and the beta-lactam substrates suggest a mode of substrate binding and the role of the conserved residues in the active site. It appears that the metallo beta-lactamases bind their substrates by establishing a subset of binding interactions near the catalytic center with conserved characteristic chemical groups of the beta-lactam substrates. These interactions are complemented by additional nonspecific binding between the more variable groups in the substrates and the flexible flap. This unique mode of binding of the mercaptocarboxylate inhibitor in the enzyme active site provides a binding model for metallo beta-lactamase inhibition with utility for future drug design.
We have undertaken the first large-scale molecular phylogenetic analysis of the Stylommatophora. Sequences of the ribosomal RNA gene-cluster were examined in 104 species of snails and slugs from 50 families, encompassing all the currently recognized major groups. It allows an independent test of the present classification based on morphology. At the level of families our molecular phylogeny closely supports the current taxonomy, but the deep branches within the tree do not. Surprisingly, a single assemblage including the families Achatinidae, Subulinidae and Streptaxidae lies near the base of the tree, forming a sister group to all remaining stylommatophorans. This primary division into 'achatinoid' and 'non-achatinoid' taxa is unexpected, and demands a radical reinterpretation of early stylommatophoran evolution. In particular, the Orthurethra appear to be relatively advanced within the 'non-achatinoid clade', and broadly equivalent to other super-familial clusters. This indicates that supposedly primitive features such as the orthurethran kidney are derived. The molecular tree also suggests that the origin of the Stylommatophora is much earlier than the main period of their diversification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.