A family of compounds based on the mononuclear coordination complex [Ru(tpy)(bpy)(OH(2))](2+) (1b; tpy = 2,2':6',2''-terpyridine, bpy = 2,2'-bipyridine) are shown to be competent catalysts in the Ce(IV)-driven oxidation of water in acidic media. The systematic installation of electron-withdrawing (e.g., -Cl, -COOH) and -donating (e.g., -OMe) groups at various positions about the periphery of the polypyridyl framework offers insight into how electronic parameters affect the properties of water oxidation catalysts. It is observed, in general, that electron-withdrawing groups (EWGs) on the bpy ligands suppress catalytic activity (k(obs)) and enhance catalytic turnover numbers (TONs); conversely, the presence of electron-donating groups (EDGs) accelerate catalytic rates while decreasing catalyst stability. We found that 2,2'-bipyridine N,N'-dioxide is produced when 1b is subject to excess Ce(IV) in acidic media, which suggests that dissociation of the bpy ligand is a source of catalyst deactivation and/or decomposition. Density functional theory (DFT) calculations corroborate these findings by showing that the Ru-N(bpy) bond trans to the O atom is weakened at higher oxidation levels while the other Ru-N bonds are affected to a lesser extent. We also show that the Ru-Cl bond is not robust in aqueous media, which has implications in studying the catalytic behavior of systems of this type.
The mechanistic details of the Ce(IV)-driven oxidation of water mediated by a series of structurally related catalysts formulated as [Ru(tpy)(L)(OH(2))](2+) [L = 2,2'-bipyridine (bpy), 1; 4,4'-dimethoxy-2,2'-bipyridine (bpy-OMe), 2; 4,4'-dicarboxy-2,2'-bipyridine (bpy-CO(2)H), 3; tpy = 2,2';6'',2''-terpyridine] is reported. Cyclic voltammetry shows that each of these complexes undergo three successive (proton-coupled) electron-transfer reactions to generate the [Ru(V)(tpy)(L)O](3+) ([Ru(V)=O](3+)) motif; the relative positions of each of these redox couples reflects the nature of the electron-donating or withdrawing character of the substituents on the bpy ligands. The first two (proton-coupled) electron-transfer reaction steps (k(1) and k(2)) were determined by stopped-flow spectroscopic techniques to be faster for 3 than 1 and 2. The addition of one (or more) equivalents of the terminal electron-acceptor, (NH(4))(2)[Ce(NO(3))(6)] (CAN), to the [Ru(IV)(tpy)(L)O](2+) ([Ru(IV)=O](2+)) forms of each of the catalysts, however, leads to divergent reaction pathways. The addition of 1 eq of CAN to the [Ru(IV)=O](2+) form of 2 generates [Ru(V)=O](3+) (k(3) = 3.7 M(-1) s(-1)), which, in turn, undergoes slow O-O bond formation with the substrate (k(O-O) = 3 × 10(-5) s(-1)). The minimal (or negligible) thermodynamic driving force for the reaction between the [Ru(IV)=O](2+) form of 1 or 3 and 1 eq of CAN results in slow reactivity, but the rate-determining step is assigned as the liberation of dioxygen from the [Ru(IV)-OO](2+) level under catalytic conditions for each complex. Complex 2, however, passes through the [Ru(V)-OO](3+) level prior to the rapid loss of dioxygen. Evidence for a competing reaction pathway is provided for 3, where the [Ru(V)=O](3+) and [Ru(III)-OH](2+) redox levels can be generated by disproportionation of the [Ru(IV)=O](2+) form of the catalyst (k(d) = 1.2 M(-1) s(-1)). An auxiliary reaction pathway involving the abstraction of an O-atom from CAN is also implicated during catalysis. The variability of reactivity for 1-3, including the position of the RDS and potential for O-atom transfer from the terminal oxidant, is confirmed to be intimately sensitive to electron density at the metal site through extensive kinetic and isotopic labeling experiments. This study outlines the need to strike a balance between the reactivity of the [Ru═O](z) unit and the accessibility of higher redox levels in pursuit of robust and reactive water oxidation catalysts.
The syntheses and the electrochemical spectroscopic properties of a suite of asymmetrical bistridentate cyclometalated Ru(II) complexes bearing terminal triphenylamine (TPA) substituents are reported. These complexes, which contain structural design elements common to both inorganic and organic dyes that exhibit superior power conversion efficiencies in the dye-sensitized solar cell (DSSC), are broadly formulated as [Ru(II)(L-2,5'-thiophene-TPA-R(1))(L-R(2))](+) [L = tridentate chelating ligand (e.g., 2,2':6',2''-terpyridine (tpy); deprotonated forms of 1,3-di(pyridin-2-yl)benzene (Hdpb) or 6-phenyl-2,2'-bipyridine (Hpbpy)); R(1) = -H, -Me, -OMe; R(2) = -H, -CO(2)Me, -CO(2)H]. The following structural attributes were systematically modified for the series: (i) electron-donating character of the terminal substituents (e.g., R(1) = -H, -Me, -OMe) placed para to the amine of the "L-2,5'-thiophene-TPA-R(1)" ligand framework; (ii) electron-withdrawing character of the tridentate chelate distal to the TPA-substituted ligand (e.g., R(2) = -H, -CO(2)Me, -CO(2)H); and (iii) position of the organometallic bond about the Ru(II) center. UV-vis spectra reveal intense and broad absorption bands arising from a collection of metal-to-ligand charge-transfer (MLCT) and TPA-based intraligand charge-transfer (ILCT) transitions that, in certain cases, extend beyond 800 nm. Electrochemical data indicate that the oxidative behavior of the TPA and metal chelate units can be independently modulated except in cases where the anionic phenyl ring is in direct conjugation with the TPA unit. In most cases, the anionic character of the cyclometalating ligands renders a metal-based oxidation event prior to the oxidation of the TPA unit. This situation can, however, be reversed with an appropriately positioned Ru-C bond and electron-rich R(1) group. This finding is important in that this arrangement confines the highest occupied molecular orbital (HOMO) to the TPA unit rather than the metal, which is optimal for sensitizing TiO(2); indeed, a remarkably high power conversion efficiency (η) in the DSSC (i.e., 8.02%) is measured for the TPA-substituted pbpy(-) chelate where R(1) = -OMe. These results provide a comprehensive strategy for improving the performance of bistridentate Ru sensitizers devoid of NCS(-) groups for the DSSC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.