In two-stroke engines replacement of carburetors with direct fuel injection systems greatly reduces engine emissions and fuel consumption by eliminating fuel short-circuiting. Air-blast direct fuel injection using a dedicated air pump has been successfully applied to both two- and four-stroke engines. In this study we re-examine the design of a low cost compression pressurized direct injection system. This system uses gases extracted from the combustion chamber during the compression stroke to supply pressure for the air blast injection, thus eliminating the air pump [1,2]. Gases, predominantly scavenging air, are transferred to a mixing cavity from the combustion chamber via a small (5mm diameter) solenoid poppet valve as the piston rises during the compression stroke. Proper functioning of the system requires careful optimization of the mixing cavity size and the blast valve timing to ensure adequate mixing cavity pressure and fuel atomization. To assist in the optimization of these design parameters a one-dimensional fluid dynamics model has been developed. Parameter sensitivity studies were carried out using the model to determine the optimum cavity size, blast valve timing, and fuel injection duration. These parameters were optimized over a wide range of engine speeds and throttle settings. Results show that a mixing cavity pressure of 500 kPa is attainable over the range of 1000 to 6000 rpm, from closed throttle to wide open throttle (WOT) without cavity pressurization encroaching into the ignition regime. Fuel maps and valve timings are presented and results are contrasted with the carbureted case, showing improved fuel efficiency and emissions for the direct injection system. These data will be used in the design of a physical demonstration engine.
This investigation assesses the benefits of retrofitting a diesel micro-pilot ignition system on a Cooper-Bessemer GMV-4TF two-stroke cycle natural gas engine with a 14” (36 cm) bore and a 14” (36 cm) stroke. The pilot fuel injectors are mounted through an adaptor in one of the spark plug holes in a set of dual-spark plug heads. A high pressure, common-rail, diesel fuel delivery system is employed and customizable power electronics control the current signal to the pilot injectors. Pilot fuel is supplied by a variable displacement, high-pressure pump that is driven with an electric motor. Software is developed that interfaces with the pump and controls and monitors the fuel rail pressure. Micro-pilot quantities from 11.5 to 20 mm3 (.0007 to .0012 in3) are explored at rail pressures from 200 to 1400 bar (2,900 to 20,300 psig). Three independent variables, pilot ignition timing, pilot fuel quantity, and pilot fuel rail pressure, are manipulated. An optimization sequence is performed to minimize total fuel consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.