When faced with adverse environmental conditions, the marsupial Dromiciops gliroides uses either daily or seasonal torpor to support survival and is the only known hibernating mammal in South America. As the sole living representative of the ancient Order Microbiotheria, this species can provide crucial information about the evolutionary origins and biochemical mechanisms of hibernation. Hibernation is a complex energy-saving strategy that involves changes in gene expression that are elicited in part by microRNAs. To better elucidate the role of microRNAs in orchestrating hypometabolism, a modified stem-loop technique and quantitative PCR were used to characterize the relative expression levels of 85 microRNAs in liver and skeletal muscle of control and torpid D. gliroides. Thirty-nine microRNAs were differentially regulated during torpor; of these, 35 were downregulated in liver and 11 were differentially expressed in skeletal muscle. Bioinformatic analysis predicted that the downregulated liver microRNAs were associated with activation of MAPK, PI3K-Akt and mTOR pathways, suggesting their importance in facilitating marsupial torpor. In skeletal muscle, hibernation-responsive microRNAs were predicted to regulate focal adhesion, ErbB, and mTOR pathways, indicating a promotion of muscle maintenance mechanisms. These tissue-specific responses suggest that microRNAs regulate key molecular pathways that facilitate hibernation, thermoregulation, and prevention of muscle disuse atrophy.
The North American wood frog, Rana sylvatica, is one of just a few anuran species that tolerates whole body freezing during the winter and has been intensely studied to identify the biochemical adaptations that support freeze tolerance. Among these adaptations is the altered expression of many genes, making freeze-responsive changes to gene regulatory mechanisms a topic of interest. The present study focuses on the potential involvement of microRNAs as one such regulatory mechanism and aims to better understand freeze/thaw stress-induced microRNA responses in the freeze-tolerant wood frog. Using quantitative PCR, relative levels of 53 microRNAs were measured in heart and skeletal muscle of control, 24 h frozen, and 8 h thawed frogs. MicroRNAs showed tissue specific expression patterns: 21 microRNAs decreased in the heart during thawing, whereas 16 microRNAs increased during freezing stress in skeletal muscle. These findings suggest that select genes may be activated and suppressed in heart and skeletal muscle, respectively, in response to freezing. Bioinformatics analysis using the DIANA miRPath program (v.2.0) predicted that the differentially expressed microRNAs may collectively regulate tissue-specific cellular pathways to promote survival of wood frogs undergoing freezing and thawing.
Hibernation is a highly regulated stress response that is utilized by some mammals to survive harsh winter conditions and involves a complex metabolic reprogramming at the cellular level to maintain tissue protections at low temperature. In this study, we profiled the expression of 117 conserved microRNAs in the heart, muscle, and liver of the 13-lined ground squirrel (Ictidomys tridecemlineatus) across four stages of the torpor-arousal cycle (euthermia, early torpor, late torpor, and interbout arousal) by real-time PCR. We found significant differential regulation of numerous microRNAs that were both tissue specific and torpor stage specific. Among the most significant regulated microRNAs was miR-208b, a positive regulator of muscle development that was found to be upregulated by fivefold in the heart during late torpor (13-fold during arousal), while decreased by 3.7-fold in the skeletal muscle, implicating a potential regulatory role in the development of cardiac hypertrophy and skeletal muscle atrophy in the ground squirrels during torpor. In addition, the insulin resistance marker miR-181a was upregulated by 5.7-fold in the liver during early torpor, which supports previous suggestions of hyperinsulinemia in hibernators during the early stages of the hibernation cycle. Although microRNA expression profiles were largely unique between the three tissues, GO annotation analysis revealed that the putative targets of upregulated microRNAs tend to enrich toward suppression of progrowth-related processes in all three tissues. These findings implicate microRNAs in the regulation of both tissue-specific processes and general suppression of cell growth during hibernation.
All authors contributed to the conception and design of the project and to the editing of the manuscript. EL, SG, JES, BC, GG, JMA, ALE, and FB conducted the brown bear experiments and provided the tissue samples. BEL and KBS conducted biochemical assays. Data analysis and assembly of the manuscript was carried out by BEL, FB, and KBS. All authors read and approved the final manuscript.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.