Large-scale atmospheric circulation patterns determine the quantity and seasonality of precipitation, the major source of water in most terrestrial ecosystems. Oxygen isotope (δ18O) dynamics of the present-day hydrologic system in the Palouse region of the northwestern U.S.A. indicate a seasonal correlation between the δ18O values of precipitation and temperature, but no seasonal trends of δ18O records in soil water and shallow groundwater. Their isotope values are close to those of winter precipitation because the Palouse receives ∼ 75% of its precipitation during winter. Palouse Loess deposits contain late Pleistocene pedogenic carbonate having ca. 2 to 3‰ higher δ18O values and up to 5‰ higher carbon isotope (δ13C) values than Holocene and modern carbonates. The late Pleistocene δ18O values are best explained by a decrease in isotopically light winter precipitation relative to the modern winter-dominated infiltration. The δ13C values are attributed to a proportional increase of atmospheric CO2 in soil CO2 due to a decrease in soil respiration rate and 13C discrimination in plants under much drier paleoclimate conditions than today. The regional climate difference was likely related to anticyclonic circulation over the Pleistocene Laurentide and Ice Sheet.
This study investigated the concentration discharge (C-Q) patterns of selected elements transported to streams during spring snowmelt through an instrumented mixed-conifer forested catchment in rhyolitic terrain in the Jemez Mountains (NM, United States). High frequency, concurrent sampling of soil solution and gasses, groundwater, and surface water enabled identification and sourcing of five groups of solutes with distinct C-Q behavior. Non-hydrolyzing cations and strong acid anions, had mostly positive C-Q relations and a clockwise hysteresis pattern related to flushing of a limited reservoir of solutes accumulated in soils under snowpack. Rare earth elements (REEs) and dissolved organic carbon (DOC), demonstrated large positive C-Q relations and a clockwise hysteresis pattern, consistent with their co-transport as metal-ligand complexes, and signaling biologically induced weathering reactions in the soil. Silicon and dissolved inorganic carbon (DIC) exhibited chemostatic C-Q trends and an anticlockwise hysteresis pattern consistent with sourcing from deep groundwater. Hydrolyzing metals (Mn, Al, Ti, and Zr) with high coefficients of variance (CV) for concentration relative to CV values for stream discharge and with no significant C-Q pattern, were found to be transported mainly as filterable colloids. Fe C-Q behavior was similar to this hydrolyzing metals group, but complexation with DOC was also important for Fe during the initial stage of the snowmelt hydrograph. Investigation of time-series of solutes and gasses provided evidence for biologically induced silicate weathering reactions that initiated in the soil subsurface and propagated down through groundwater to streams.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of −14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.
The belowground architecture of the Critical Zone consists of soil and rock in various stages of weathering and wetness that acts as a medium for biological growth, mediates chemical reactions, and controls partitioning of hydrological fluxes. Hydrogeophysical imaging provides unique insights into geometries and properties of the earth materials that are present in the Critical Zone and beyond the reach of direct observation besides sparse wellbores. Improved understanding of Critical Zone architecture can be achieved by leveraging geophysical measurements of the subsurface. Creating categorical models of the Critical Zone is valuable for driving hydrological models and comparing belowground architectures between different sites to interpret weathering processes. The Critical Zone architecture is revealed through a novel comparison of hillslopes by applying facies classification in the elastic-electric domain driven by surface-based hydrogeophysical measurements. Three pairs of hillslopes grouped according to common geologic substrates – granite, volcanic extrusive, and glacially altered, are classified by five different hydro-facies classes to reveal relative wetness and weathering states. The hydro-facies classifications are robust to the choice of initial mean values used in the classification and non-contemporaneous timing of geophysical data acquisition. These results will lead to improved interdisciplinary models of Critical Zone processes at various scales, and to an increased ability to predict hydrologic timing and partitioning. Beyond the hillslope scale, this enhanced capability to compare Critical Zone architecture can also be exploited at the catchment scale with implications for improved understanding of the link between rock weathering, hydrochemical fluxes, and landscape morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.