By surmounting the technical difficulties of collecting, integrating, and disseminating surface observations from many different organizations, MesoWest is able to provide research and operational meteorologists with useful, real-time data from the western states.
The underlying mechanisms controlling uterine contractions during labor are still poorly understood. Integrins are heterodimeric, transmembrane receptors composed of alpha and beta subunits that can be found in focal adhesions. Because these structures play an important role in the regulation of smooth muscle contractility and cell adhesion, we hypothesized that alpha5 integrin mRNA (Itga5) and protein (ITGA5) expression would be induced in the rat myometrium during late pregnancy and labor. Itga5 mRNA expression was significantly increased (P < 0.05) from Day 17 to labor, noticeably decreasing 1 day postpartum (PP). Immunoblot analysis illustrated a continual increase in ITGA5 levels during pregnancy, labor, and PP, with levels reaching significance at labor (P < 0.05). Analysis of ITGA5 expression by immunocytochemistry demonstrated that it is primarily localized to myometrial cell membranes in the longitudinal muscle layer of the myometrium from before pregnancy to Day 6, and in both the longitudinal and circular muscle layers from Day 15 to PP. Treatment of late-pregnant rats with progesterone blocked labor and resulted in sustained expression of Itga5 mRNA expression to Day 24. In addition, immunocytochemistry experiments showed ITGA5 was detectable at higher levels in cell membranes of both myometrial layers in progesterone-treated animals on Days 23 and 24, compared with vehicle controls. We propose that ITGA5, with its sole known partner, ITGB1, may be important in promoting cellular cohesion during late pregnancy. This process may aid the development of a mechanical syncytium for efficient force transduction during the sustained, coordinated, and powerful contractions of labor.
The adaptive growth of the uterus during pregnancy is a critical event that involves increased synthesis of extracellular matrix (ECM) proteins and dynamic remodeling of smooth muscle cell (SMC)-ECM interactions. We have previously found a dramatic increase in the expression of the mRNAs that encode fibronectin (FN) and its alpha5-integrin receptor (ITGA5) in pregnant rat myometrium near to term. Since the myometrium at term is exposed to considerable mechanical stretching of the uterine wall by the growing fetus(es), the objective of the present study was to examine its role in the regulation of FN and ITGA5 expression at late gestation and during labor. Using myometrial tissues from unilaterally pregnant rats, we investigated the temporal changes in Itga5 gene expression in gravid and empty uterine horns by Northern blotting and real-time PCR, in combination with immunoblotting and immunofluorescence analyses of the temporal/spatial distributions of the FN and ITGA5 proteins. In addition, we studied the effects of early progesterone (P4) withdrawal on Itga5 mRNA levels and ITGA5 protein detection. At all time-points examined, the Itga5 mRNA levels were increased in the gravid uterine horn, compared to the empty horn (P < 0.05). Immunoblot analysis confirmed higher ITGA5 and FN protein levels in the myometrium, associated with gravidity (P < 0.05). Immunodetection of ITGA5 was consistently high in the longitudinal muscle layer, increased with gestational age in the circular muscle layer of the gravid horn, and remained low in the empty horn. ITGA5 and FN immunostaining in the gravid horn exhibited a continuous layer of variable thickness associated directly with the surfaces of individual SMCs. In contrast to the effects of stretch, P4 does not appear to regulate ITGA5 expression. We speculate that the reinforcement of the FN-ITGA5 interaction: 1) contributes to myometrial hypertrophy and remodeling during late pregnancy; and 2) facilitates force transduction during the contractions of labor by anchoring hypertrophied SMCs to the uterine ECM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.