Objective assessment of Parkinson's disease symptoms during daily life can help improve disease management and accelerate the development of new therapies. However, many current approaches require the use of multiple devices, or performance of prescribed motor activities, which makes them ill-suited for free-living conditions. Furthermore, there is a lack of open methods that have demonstrated both criterion and discriminative validity for continuous objective assessment of motor symptoms in this population. Hence, there is a need for systems that can reduce patient burden by using a minimal sensor setup while continuously capturing clinically meaningful measures of motor symptom severity under free-living conditions. We propose a method that sequentially processes epochs of raw sensor data from a single wrist-worn accelerometer by using heuristic and machine learning models in a hierarchical framework to provide continuous monitoring of tremor and bradykinesia. Results show that sensor derived continuous measures of resting tremor and bradykinesia achieve good to strong agreement with clinical assessment of symptom severity and are able to discriminate between treatment-related changes in motor states.
Accurately monitoring motor and non-motor symptoms as well as complications in people with Parkinson's disease (PD) is a major challenge, both during clinical management and when conducting clinical trials investigating new treatments. A variety of strategies have been relied upon including questionnaires, motor diaries, and the serial administration of structured clinical exams like part III of the MDS-UPDRS. To evaluate the potential use of mobile and wearable technologies in clinical trials of new pharmacotherapies targeting PD symptoms, we carried out a project (project BlueSky) encompassing four clinical studies, in which 60 healthy volunteers (aged 23-69; 33 females) and 95 people with PD (aged 42-80; 37 females; years since diagnosis 1-24 years; Hoehn and Yahr 1-3) participated and were monitored in either a laboratory environment, a simulated apartment, or at home and in the community. In this paper, we investigated (i) the utility and reliability of self-reports for describing motor fluctuations; (ii) the agreement between participants and clinical raters on the presence of motor complications; (iii) the ability of video raters to accurately assess motor symptoms, and (iv) the dynamics of tremor, dyskinesia, and bradykinesia as they evolve over the medication cycle. Future papers will explore methods for estimating symptom severity based on sensor data. We found that 38% of participants who were asked to complete an electronic motor diary at home missed~25% of total possible entries and otherwise made entries with an average delay of >4 h. During clinical evaluations by PD specialists, self-reports of dyskinesia were marked bỹ 35% false negatives and 15% false positives. Compared with live evaluation, the video evaluation of part III of the MDS-UPDRS significantly underestimated the subtle features of tremor and extremity bradykinesia, suggesting that these aspects of the disease may be underappreciated during remote assessments. On the other hand, live and video raters agreed on aspects of postural instability and gait. Our results highlight the significant opportunity for objective, high-resolution, continuous monitoring afforded by wearable technology to improve upon the monitoring of PD symptoms.
People with Parkinson’s (PWP) disease are under constant tension with respect to their dopamine replacement therapy (DRT) regimen. Waiting too long between doses results in more prominent symptoms, loss of motor function, and greater risk of falling per step. Shortened pill cycles can lead to accelerated habituation and faster development of disabling dyskinesias. The Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) is the gold standard for monitoring Parkinson’s disease progression but requires a neurologist to administer and therefore is not an ideal instrument to continuously evaluate short-term disease fluctuations. We investigated the feasibility of using speech to detect changes in medication states, based on expectations of subtle changes in voice and content related to dopaminergic levels. We calculated acoustic and prosodic features for three speech tasks (picture description, reverse counting, and diadochokinetic rate) for 25 PWP, each evaluated “ON” and “OFF” DRT. Additionally, we generated semantic features for the picture description task. Classification of ON/OFF medication states using features generated from picture description, reverse counting and diadochokinetic rate tasks resulted in cross-validated accuracy rates of 0.89, 0.84, and 0.60, respectively. The most discriminating task was picture description which provided evidence that participants are more likely to use action words in ON than in OFF state. We also found that speech tempo was modified by DRT. Our results suggest that automatic speech assessment can capture changes associated with the DRT cycle. Given the ease of acquiring speech data, this method shows promise to remotely monitor DRT effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.