The abdominal muscles have been shown to fatigue in response to voluntary isocapnic hyperpnea using direct nerve stimulation techniques. We investigated whether the abdominal muscles fatigue in response to dynamic lower limb exercise using such techniques. Eleven male subjects [peak oxygen uptake (VO2 peak) = 50.0 +/- 1.9 (SE) ml.kg(-1).min(-1)] cycled at >90% VO2 peak to exhaustion (14.2 +/- 4.2 min). Abdominal muscle function was assessed before and up to 30 min after exercise by measuring the changes in gastric pressure (Pga) after the nerve roots supplying the abdominal muscles were magnetically stimulated at 1-25 Hz. Immediately after exercise there was a decrease in Pga at all stimulation frequencies (mean -25 +/- 4%; P < 0.001) that persisted up to 30 min postexercise (-12 +/- 4%; P = 0.001). These reductions were unlikely due to changes in membrane excitability because amplitude, duration, and area of the rectus abdominis M wave were unaffected. Declines in the Pga response to maximal voluntary expiratory efforts occurred after exercise (158 +/- 13 before vs. 145 +/- 10 cmH2O after exercise; P = 0.005). Voluntary activation, assessed using twitch interpolation, did not change (67 +/- 6 before vs. 64 +/- 2% after exercise; P = 0.20), and electromyographic activity of the rectus abdominis and external oblique increased during these volitional maneuvers. These data provide new evidence that the abdominal muscles fatigue after sustained, high-intensity exercise and that the fatigue is primarily due to peripheral mechanisms.
Background The six-minute walk test is widely utilized to characterize activity tolerance and response to therapy in pulmonary arterial hypertension (PAH), but provides little information about cardiopulmonary pathophysiology. The aim of the present study was to determine whether measures of pulmonary gas exchange during relatively light exercise can be used to differentiate between PAH patients and healthy individuals, and stratify disease severity. Methods 40 PAH patients and 25 matched controls participated in the study. Each individual completed a submaximal exercise test, consisting of 2-min rest, 3-min exercise and 1-min recovery. Ventilation, pulmonary gas exchange, arterial oxygen saturation (SaO2) and heart rate were measured throughout using a simplified gas analysis system. Results A number of gas exchange variables differentiated PAH patients and controls. End-tidal CO2 (PETCO2) and SaO2 were lower in PAH vs. controls (31±7vs.39±3mmHg and 89±5vs95±2%, respectively, p<0.05). By contrast, breathing efficiency (VE/VCO2 ratio) was higher in PAH vs. controls (42±10 vs. 33±5, p<0.05). Additionally, PETCO2 and VE/VCO2 discriminated between different severities of PAH. Conclusions Gas exchange variables obtained during light submaximal exercise differentiated PAH patients from healthy controls and also between different severities of PAH. Submaximal exercise gas exchange may be a useful endpoint measure in a PAH population.
We determined whether a non-invasive gas exchange based estimate of pulmonary vascular (PV) capacitance [PVCAP = stroke volume (SV) × pulmonary arterial pressure (Ppa)] (GXCAP) tracked the PV response to exercise in heart-failure (HF) patients. Pulmonary wedge pressure (Ppw), Ppa, PV resistance (PVR), and gas exchange were measured simultaneously during cycle exercise in 42 HF patients undergoing right-heart catheterization. During exercise, PETCO2 and VE/VCO2 were related to each other (r = −0.93, P < 0.01) and similarly related to mean Ppa (mPpa) (r = −0.39 and 0.36; P < 0.05); PETCO2 was subsequently used as a metric of mPpa. Oxygen pulse (O2 pulse) tracked the SV response to exercise (r = 0.91, P < 0.01). Thus, GXCAP was calculated as O2 pulse × PETCO2. During exercise, invasively determined PVCAP and non-invasive GXCAP were related (r = 0.86, P < 0.01), and GXCAP correlated with mPpa and PVR (r = −0.46 and −0.54; P < 0.01). In conclusion, noninvasive gas exchange measures may represent a simple way to track the PV response to exercise in HF.
We asked whether specific inspiratory muscle training (IMT) improves respiratory structure and function and peak exercise responses in highly trained athletes with cervical spinal cord injury (SCI). Ten Paralympic wheelchair rugby players with motor-complete SCI (C5-C7) were paired by functional classification then randomly assigned to an IMT or placebo group. Diaphragm thickness (B-mode ultrasonography), respiratory function [spirometry and maximum static inspiratory (PI ,max ) and expiratory (PE ,max ) pressures], chronic activity-related dyspnea (Baseline and Transition Dyspnea Indices), and physiological responses to incremental arm-crank exercise were assessed before and after 6 weeks of pressure threshold IMT or sham bronchodilator treatment. Compared to placebo, the IMT group showed significant increases in diaphragm thickness (P = 0.001) and PI ,max (P = 0.016). There was a significant increase in tidal volume at peak exercise in IMT vs placebo (P = 0.048) and a strong trend toward an increase in peak work rate (P = 0.081, partial eta-squared = 0.33) and peak oxygen uptake (P = 0.077, partial eta-squared = 0.34). No other indices changed post-intervention. In conclusion, IMT resulted in significant diaphragmatic hypertrophy and increased inspiratory muscle strength in highly trained athletes with cervical SCI. The strong trend, with large observed effect, toward an increase in peak aerobic performance suggests IMT may provide a useful adjunct to training in this population.
Background Muscle strength loss following immobilisation has been predominantly attributed to rapid muscle atrophy. However, this cannot fully explain the magnitude of muscle strength loss, so changes in neuromuscular function (NMF) may be involved. Objectives We systematically reviewed literature that quantified changes in muscle strength, size and NMF following periods of limb immobilisation in vivo in humans. Methods Studies were identified following systematic searches, assessed for inclusion, data extracted and quality appraised by two reviewers. Data were tabulated and reported narratively. Results Forty eligible studies were included, 22 immobilised lower and 18 immobilised upper limbs. Limb immobilisation ranged from 12 h to 56 days. Isometric muscle strength and muscle size declined following immobilisation; however, change magnitude was greater for strength than size. Evoked resting twitch force decreased for lower but increased for upper limbs. Rate of force development either remained unchanged or slowed for lower and typically slowed for upper limbs. Twitch relaxation rate slowed for both lower and upper limbs. Central motor drive typically decreased for both locations, while electromyography amplitude during maximum voluntary contractions decreased for the lower and presented mixed findings for the upper limbs. Trends imply faster rates of NMF loss relative to size earlier in immobilisation periods for all outcomes. Conclusions Limb immobilisation results in non-uniform loss of isometric muscle strength, size and NMF over time. Different outcomes between upper and lower limbs could be attributed to higher degrees of central neural control of upper limb musculature. Future research should focus on muscle function losses and mechanisms following acute immobilisation. Registration PROSPERO reference: CRD42016033692. Electronic supplementary material The online version of this article (10.1007/s40279-019-01088-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.