Resolving land cover hierarchy relationships in urban settings is important for defining the scale and type of management required to enhance stream health. We investigated associations between macroinvertebrate assemblages in urban streams of Hamilton, New Zealand, and environmental variables measured at multiple spatial scales comprising (i) local-scale physicochemical conditions, (ii) impervious area in multiple stream corridor widths (30, 50 and 100 m) along segments (sections of stream between tributary nodes) and for entire upstream networks, and (iii) total impervious area in stream segment sub-catchments and upstream catchments. Imperviousness was higher for stream segment subcatchments than for entire catchments because of the agricultural headwaters of some urban streams. Imperviousness declined as corridor width declined at both segment and catchment scales reflecting the vegetated cover along most urban stream gullies. Upstream catchment imperviousness was strongly and inversely correlated with dissolved organic carbon concentration, whereas segment and upstream corridor scales were correlated with water temperature and pH. Corridor imperviousness appeared to be a stronger predictor than catchment imperviousness of Ephemeroptera, Plecoptera and Trichoptera taxa richness and the Quantitative Urban Community Index specifically developed to assess impacts of urbanisation. In contrast, imperviousness at all measured scales added only marginal improvement in assemblage-based models over that provided by the local-scale physicochemical variables of reach width, habitat quality, macrophyte cover, pH and dissolved oxygen concentration. These findings infer variable scales of influence affecting macroinvertebrate communities in urban streams and suggest that it may be important to consider local and corridor factors when determining mechanisms of urbanisation impacts and potential management options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.