Water oxidation is a key chemical transformation for the conversion of solar energy into chemical fuels. Our review focuses on recent work on robust earth-abundant heterogeneous catalysts for the oxygen-evolving reaction (OER). We point out that improvements in the performance of OER catalysts will depend critically on the success of work aimed at understanding reaction barriers based on atomic-level mechanisms. We highlight the challenge of obtaining acid-stable OER catalysts, with proposals for elements that could be employed to reach this goal. We suggest that future advances in solar fuels science will be accelerated by the development of new methods for materials synthesis and characterization, along with in-depth investigations of redox mechanisms at catalytic surfaces.
Surfactant-free mixed-metal hydroxide water oxidation nanocatalysts were synthesized by pulsed-laser ablation in liquids. In a series of [Ni-Fe]layered double hydroxides with intercalated nitrate and water, [Ni 1−x Fe x (OH) 2 ](NO 3 ) y (OH) x−y •nH 2 O, higher activity was observed as the amount of Fe decreased to 22%. Addition of Ti 4+ and La 3+ ions further enhanced electrocatalysis, with a lowest overpotential of 260 mV at 10 mA cm −2 . Electrocatalytic water oxidation activity increased with the relative proportion of a 405.1 eV N 1s (XPS binding energy) species in the nanosheets.
Local Identifier(s): UCPMS ID: 1604555eScholarship provides open access, scholarly publishing services to the University of California and delivers a dynamic research platform to scholars worldwide.
Abstract:We report a discovery that perfunctionalized icosahedral dodecaborate clusters of the type B12(OCH2Ar)12 (Ar = Ph or C6F5) can undergo photo-excitation with visible light, leading to a new class of metal-free photooxidants. Excitation in these species occurs as a result of the charge transfer between low-lying orbitals located on the benzyl substituents and an unoccupied orbital delocalized throughout the boron cluster core. Here we show how these species, photo-excited with a benchtop blue LED source, can exhibit excited-state reduction potentials as high as 3 V and can participate in electron-transfer processes with a broad range of styrene monomers, initiating their polymerization. Initiation is observed in cases of both electron-rich and electron-deficient styrene monomers at cluster loadings as low as 0.005 mol%. Furthermore, photo-excitation of B12(OCH2C6F5)12 in the presence of a less activated olefin such as isobutylene results in the production of highly branched poly(isobutylene). This work introduces a new class of air-stable, metal-free photo-redox reagents capable of mediating chemical transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.