The increasing availability and use of high-frequency water quality sensors has enabled unprecedented observations of temporal variability in water chemistry in aquatic ecosystems. However, we remain limited by the prohibitive costs of these probes to explore spatial variability in natural systems. To overcome this challenge, we have developed a novel auto-sampler system that sequentially pumps water from up to 12 different sites located within a 12 m radius to a single water quality probe. This system is able to generate high temporal frequency in situ water chemistry data from multiple replicated units during experiments as well as multiple sites and depths within natural aquatic ecosystems. Thus, with one water quality probe, we are able to observe rapid changes in water chemistry concentrations over time and space. Here, we describe the coupled multiplexer-probe system and its performance in two case studies: a mesocosm experiment examining the effects of water current velocity on nitrogen dynamics in constructed wetland sediment cores and a whole-ecosystem manipulation of redox conditions in a reservoir. In both lotic and lentic case studies, we observed minute-scale changes in nutrient concentrations, which provide new insight on the variability of biogeochemical processes. Moreover, in the reservoir, we were able to measure rapid changes in metal concentrations, in addition to those of nutrients, in response to changes in redox. Consequently, we believe that this coupled system holds great promise for measuring biogeochemical fluxes in a diverse suite of aquatic ecosystems and experiments.
Woodchip bioreactors are widely used to control nitrogen export from agriculture using denitrification. There is abundant evidence that drying–rewetting (DRW) cycles can promote enhanced metabolic rates in soils. A 287‐d experiment investigated the effects of weekly DRW cycles on nitrate (NO3) removal in woodchip columns in the laboratory receiving constant flow of nitrated water. Columns were exposed to continuous saturation (SAT) or to weekly, 8‐h drying‐rewetting (8 h of aerobiosis followed by saturation) cycles (DRW). Nitrate concentrations were measured at the column outlets every 2 h using novel multiplexed sampling methods coupled to spectrophotometric analysis. Drying–rewetting columns showed greater export of total and dissolved organic carbon and increased NO3 removal rates. Nitrate removal rates in DRW columns increased by up to 80%, relative to SAT columns, although DRW removal rates decreased quickly within 3 d after rewetting. Increased NO3 removal in DRW columns continued even after 39 DRW cycles, with ∼33% higher total NO3 mass removed over each weekly DRW cycle. Data collected in this experiment provide strong evidence that DRW cycles can dramatically improve NO3 removal in woodchip bioreactors, with carbon availability being a likely driver of improved efficiency. These results have implications for hydraulic management of woodchip bioreactors and other denitrification practices.
Core Ideas
Weekly, 8‐h drying–rewetting (DRW) cycles increased nitrate removal in woodchip columns.
Increased nitrate removal in DRW columns declined with number of days since rewetting.
Nitrate removal corresponded to greater leaching of dissolved organic C in DRW columns.
Effect of DRW was significant even after 39 weekly DRW cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.