For moderate-to-high power converters, electrolytic capacitor is an indispensable component. Life of electrolytic capacitor is critical compared with its semiconductor counterparts. This study proposes a new model to analyse the converter life and to design the circuit to lower the current ripple in the electrolytic capacitor in order to reach for longer converter life. Two-stage power converter (a power factor correction converter followed by a DC-DC converter) is the typical practice for AC-DC converter. Forward converter and Flyback converters are the common choices for the downstream converter for this power range. Comparison between two modes of operation, discontinuous conduction mode and continuous conduction mode (CCM), for the two converter topologies shows a typical CCM Forward converter to have almost 300 times longer life than a CCM Flyback converter. Another focus of the work is to analyse the effect of circuit parameters on the converter life. A critical inductance is established to guide the design for long life converters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.