Appropriate nutrition targets decrease the risk of incidence of preventable diseases in addition to providing physiological benefits. Dietary fiber, despite being available and necessary in balanced nutrition, are consumed at below daily requirements. Food byproducts high in dietary fiber and free and bonded bioactive compounds are often discarded. Herein, persimmon byproducts are presented as an interesting source of fiber and bioactive compounds. The solvent extraction effects of dietary fiber from persimmon byproducts on its techno- and physio-functional properties, and on the Caco-2 cell model after being subjected to in vitro gastrointestinal digestion and probiotic bacterial fermentation, were evaluated. The total, soluble, and insoluble dietary fiber, total phenolic, carotenoid, flavonoid contents, and antioxidant activity were determined. After in vitro digestion, low quantities of bonded phenolic compounds were detected in all fiber fractions. Moreover, total phenolic and carotenoid contents, as well as antioxidant activity, decreased depending on the extraction solvent, whereas short chain fatty acids production increased. Covalently bonded compounds in persimmon fiber mainly consisted of hydroxycinnamic acids and flavanols. After probiotic bacterial fermentation, few phenolic compounds were determined in all fiber fractions. Results suggest that persimmon’s dietary fiber functional properties are dependent on the extraction process used, which may promote a strong probiotic response and modulate the epithelial barrier function.
Plant-derived extracellular vesicles (PEVs) have gained attention as promising bioactive nutraceutical molecules; their presence in common fruit juices has increased their significance because human interaction is inevitable. The goal of this study was to evaluate the potential of PEVs derived from grapefruit and tomato juices as functional ingredients, antioxidant compounds, and delivery vehicles. PEVs were isolated using differential ultracentrifugation and were found to be similar in size and morphology to mammalian exosomes. The yield of grapefruit exosome-like vesicles (GEVs) was higher than that of tomato exosome-like vesicles (TEVs), despite the latter having larger vesicle sizes. Furthermore, the antioxidant activity of GEVs and TEVs was found to be low in comparison to their juice sources, indicating a limited contribution of PEVs to the juice. GEVs showed a higher efficiency in being loaded with the heat shock protein 70 (HSP70) than TEVs, as well as a higher efficiency than TEV and PEV-free HSP70 in delivering HSP70 to glioma cells. Overall, our results revealed that GEVs present a higher potential as functional ingredients present in juice and that they exert the potential to deliver functional molecules to human cells. Although PEVs showed low antioxidant activity, their role in oxidative response in cells should be further addressed.
Persimmon (Diospyros kaki Thunb.) fruits are a remarkable source of carotenoids, which have shown protective effects against UV radiation in bacteria, fungi, algae, and plants. The aim of this study was to analyze the photoprotection provided by an acetone extract, rich in carotenoids and obtained from byproducts derived from the persimmon juice industry, against UV-induced cell death in the keratinocyte HaCaT cell line. For this purpose, the cytotoxicity and phototoxicity of carotenoid extract, as well as its intracellular reactive oxygen species (ROS) scavenging and anti-adhesive activities towards HaCaT cells, were evaluated. The in vitro permeation test provided information about the permeability of the carotenoid extract. Persimmon extracts, rich in carotenoids (PEC), were absorbed by HaCaT keratinocyte cells, which reduced the UV-induced intracellular ROS production in treated cells. Thus, PEC exerted a photoprotective and regenerative effect on UV-irradiated HaCaT cells, and this protection was UV dose-dependent. No cytotoxic effect was observed in HaCaT cultures at the concentration tested. PEC treatment also stimulated the adhesion capacity of skin microbiome to HaCaT cells, while exhibiting a significant anti-adhesive activity against all tested pathogens. In conclusion, PEC showed potential for use as a functional ingredient in skin-care products.
Gas chromatography (GC) techniques for analyzing and determining the cannabinoid profile in cannabis (Cannabis sativa L.) are widely used in standard laboratories; however, these methods may mislabel the profile when used under rapid conditions. Our study aimed to highlight this problem and optimize GC column conditions and mass spectrometry (MS) parameters to accurately identify cannabinoids in both standards and forensic samples. The method was validated for linearity, selectivity, and precision. It was observed that when tetrahydrocannabinol (Δ9-THC) and cannabidiolic acid (CBD-A) were examined using rapid GC conditions, the resulting derivatives generated identical retention times. Wider chromatographic conditions were applied. The linear range for each compound ranged from 0.02 μg/mL to 37.50 μg/mL. The R2 values ranged from 0.996 to 0.999. The LOQ values ranged from 0.33 μg/mL to 5.83 μg/mL, and the LOD values ranged from 0.11 μg/mL to 1.92 μg/mL. The precision values ranged from 0.20% to 8.10% RSD. In addition, forensic samples were analyzed using liquid chromatography (HPLC-DAD) in an interlaboratory comparison test, with higher CBD and THC content than GC–MS determination (p < 0.05) in samples. Overall, this study highlights the importance of optimizing GC techniques to avoid mislabeling cannabinoids in cannabis samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.