Coastal protection remains a global priority. Protection and maintenance of shoreline integrity is often a goal of many coastal protection programs. Typically, shorelines are protected by armoring them with hard, non-native, and nonsustainable materials such as limestone. This study investigated the potential shoreline protection role of created, three-dimensional Eastern oyster (Crassostrea virginica) shell reefs fringing eroding marsh shorelines in Louisiana. Experimental reefs (25 3 1.0 3 0.7 m; intertidal) were created in June 2002 at both high and low wave energy shorelines. Six 25-m study sites (three cultched and three control noncultched) were established at each shoreline in June 2002, for a total of 12 sites. Shoreline retreat was reduced in cultched low-energy shorelines as compared to the control low-energy shorelines (analysis of variance; p < 0.001) but was not significantly different between cultched and noncultched sites in high-energy environments. Spat set increased from 0.5 ± 0.1 spat/shell in July 2002 to a peak of 9.5 ± 0.4 spat/shell in October 2002. On average, oyster spat grew at a rate of 0.05 mm/day through the duration of the study. Recruitment and growth rates of oyster spat suggested potential reef sustainability over time. Small fringing reefs may be a useful tool in protecting shorelines in low-energy environments. However, their usefulness may be limited in high-energy environments.
Artificial sediment enhancement using a thin layer of dredged material has been suggested as a means to increase elevation and create soil conditions conducive to increased marsh structure and function in deteriorating marshes. Using a chronosequence approach, we examined the effects of sediment enhancement in deteriorating marsh and open-water pond habitats located in six brackish marshes. Sediment enhancement of both marsh and interior pond sites had significant, immediate, and long-lasting effects on physical soil properties and nutrient status with increased bulk density and inorganic nitrogen. Vegetative cover and productivity response were minimal for deteriorating vegetated marshes with the shortterm response data showing no significant impact of sediment enhancement and long-term trends indicating decreasing productivity over time. In contrast, trajectory models of vegetative cover and productivity in interior pond sites showed increases over time indicating that, for restoration of interior ponds, sediment enhancement may prove valuable.The use of trajectory models emphasizes the need for longterm monitoring to determine restoration success of projects.
Threats to riverine landscapes are often the result of system-wide river management policy, located far from where the threats appear, or both. As a result, the rationale for land protection to achieve floodplain conservation and restoration has shifted to require that lands must also have multiple and systemic threat abatement benefits. The Mississippi River Flood of 2011 highlighted the need for increased floodplain complexes along the Mississippi River to provide both systemic threat abatement and conservation benefits. We used spatial analysis, landowner outreach, and market assessment to examine ways to enhance land protection in the Atchafalaya River Basin Floodway, the largest river basin swamp North America and the site of two employed floodway locations during the 2011 flood. We identified six Priority Conservation Areas (77,084 ha) in the floodway that are largely privately owned (mean 78.2 ± 6.4%), with forest dominated by Taxodium distichum (baldcypress) and hydrologic and water quality characteristics considered most suitable for baldcypress regeneration (31.2 ± 2.4% and 10.2 ± 3.0% of area, respectively). Landowners expressed high (80%) interest in land protection programs and found the range of property values derived from market analyzes (minimal protection-$346 USD/ha; additional protections-up to $2,223 USD/ha) to be reasonable. We seek to: (1) enhance current land protection in the Atchafalaya River Basin and (2) provide a model for using land protection to increase the number of floodplains for both systemic threat abatement and conservation benefits.
Implications for Practice• These results provide a model for rapid development and implementation of land conservation with public and private funding throughout the Mississippi River system to (1) achieve system-wide benefits (i.e. flood protection) and (2) protect biodiversity, and (3) advance conservation. • We provide a model to engage decision-makers and landowners, garner stakeholder support, and procure funding to achieve land protection in key floodplain areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.