A computer algorithm was developed that estimates the latent and sensible heat loads due to the bulk refrigeration of fruits and vegetables. The algorithm also predicts the commodity moisture loss and temperature distribution which occurs during refrigeration. This algorithm includes the combined phenomena of transpiration, respiration, air flow, and convective heat and mass transfer. The development and performance of the computer algorithm are presented in two parts. This paper, Part I, discusses commodity thermophysical properties and flowfield parameters which govern the heat and mass transfer from fruits and vegetables. Commodity thermophysical properties include transpiration and respiration, while flowfield parameters include psychrometric properties and convective heat and mass transfer coefficients. Part I describes the modeling treatment of these properties and parameters. The second paper, Part II, discusses the heat and mass transfer models, compares algorithm results to experimental data, and describes a parametric study utilizing the algorithm. Existing bulk load heat transfer models are also reviewed in Part II.
Most balloon angioplasty procedures include the insertion of tiny cylindrical wire mesh structures, called cardiovascular stents, into the artery to prevent the elastic recoil that follows arterial dilatation. The scaffolding characteristics of the stent provide strength to the artery wall. However, vascular injury during stent deployment and∕or recognition of the stent as a foreign material triggers neointimal hyperplasia, causing re-closure, or restenosis, of the artery. A recent advancement to counteract restenosis is to employ drug-eluting stents to locally deliver immunosuppressant and antiproliferative drugs. In this project, Fick’s law of diffusion was used to model drug diffusion from the stent matrix into the adjacent arterial tissue. An analytical procedure was also developed to estimate the circumferential and the flexural stiffnesses of stents. Furthermore, a unique auxetic (negative Poisson’s ratio) stent structure was proposed that exhibits high circumferential strength in its expanded configuration and low flexural rigidity in its crimped configuration. Results generated with the analytical diffusion model, developed in this project, compare favorably with previously published clinical and experimental data. The circumferential and flexural stiffnesses estimated using the analytical procedure developed in this project compare favorably with the results from rigorous finite element analyses and previously published experimental data.
-Soil thermal conductivity is significantly influenced by saturation and dry density. In this paper, a family of empirical correlations are presented which relate soil thermal conductivity to saturation for five soil types, namely, gravel, sand, silt, clay and peat, in both the frozen and unfrozen states. These correlations were developed from a soil thermal conductivity database which was constructed from measured data available in the literature. The effects of dry density are also examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.