Disulfide bonds have been generally considered to be either structural or catalytic. Structural bonds stabilize a protein, while catalytic bonds mediate thiol-disulfide interchange reactions in substrate proteins. There is emerging evidence for a third type of disulfide bond that can control protein function by triggering a conformational change when it breaks and/or forms. These bonds can be thought of as allosteric disulfides. To better define the properties of allosteric disulfides, we have analyzed the geometry and dihedral strain of 6874 unique disulfide bonds in 2776 X-ray structures. A total of 20 types of disulfide bonds were identified in the dataset based on the sign of the five chi angles that make up the bond. The known allosteric disulfides were all contained in 1 of the 20 groups, the -RHStaple bonds. This bond group has a high mean potential energy and narrow energy distribution, which is consistent with a functional role. We suggest that the -RHStaple configuration is a hallmark of allosteric disulfides. About 1 in 15 of all structurally determined disulfides is a potential allosteric bond.
Like many voltage-sensitive ion pumps, cytochrome c oxidase is inhibited by zinc. Binding of zinc to the outside surface of Rhodobacter sphaeroides cytochrome c oxidase inhibits the enzyme with a K I of < 5 M when the enzyme is reconstituted into phospholipid vesicles in the presence of a membrane potential. In the absence of a membrane potential and a pH gradient, millimolar concentrations of zinc are required to inhibit. This differential inhibition causes a dramatic increase in the respiratory control ratio from 6 to 40 for wild-type oxidase. 2؉ . Proton pumping is slower and less efficient with zinc. The results suggest that zinc inhibits proton movement through a proton exit path, which can allow proton back-leak at high membrane potentials. The physiological and mechanistic significance of proton movement in the exit pathway and its blockage by zinc is discussed in terms of regulation of the efficiency of energy transduction.
Background: Allosteric disulfide bonds regulate protein function when they break and/or form. They typically have a -RHStaple configuration, which is defined by the sign of the five chi angles that make up the disulfide bond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.