This work presents the Manifold Invariant Extended Kalman Filter, a novel approach for better consistency and accuracy in state estimation on manifolds. The robustness of this filter allows for techniques with high noise potential like ultra-wideband localization to be used for a wider variety of applications like autonomous metal structure inspection. The filter is derived and its performance is evaluated by testing it on two different manifolds: a cylindrical one and a bivariate b-spline representation of a real vessel surface, showing its flexibility to being used on different types of surfaces. Its comparison with a standard EKF that uses virtual, noise-free measurements as manifold constraints proves that it outperforms standard approaches in consistency and accuracy. Further, an experiment using a real magnetic crawler robot on a curved metal surface with ultra-wideband localization shows that the proposed approach is viable in the real world application of autonomous metal structure inspection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.