We present a dynamic neural network (DNN) solution for detecting time-varying occurrences of tremor and dyskinesia at 1 s resolution from time series data acquired from surface electromyographic (sEMG) sensors and tri-axial accelerometers worn by patients with Parkinson's disease (PD). The networks were trained and tested on separate datasets, each containing approximately equal proportions of tremor, dyskinesia, and disorder-free data from 8 PD and 4 control subjects performing unscripted and unconstrained activities in an apartment-like environment. During DNN testing, tremor was detected with a sensitivity of 93% and a specificity of 95%, while dyskinesia was detected with a sensitivity of 91% and a specificity of 93%. Similar sensitivity and specificity levels were obtained when DNN testing was carried out on subjects who were not included in DNN training.
We present a dynamic neural network (DNN) solution for detecting instances of freezing-of-gait (FoG) in Parkinson's disease (PD) patients while they perform unconstrained and unscripted activities. The input features to the DNN are derived from the outputs of three triaxial accelerometer (ACC) sensors and one surface electromyographic (EMG) sensor worn by the PD patient. The ACC sensors are placed on the shin and thigh of one leg and on one of the forearms while the EMG sensor is placed on the shin. Our FoG solution is architecturally distinct from the DNN solutions we have previously designed for detecting dyskinesia or tremor. However, all our DNN solutions utilize the same set of input features from each EMG or ACC sensor worn by the patient. When tested on experimental data from PD patients performing unconstrained and unscripted activities, our FoG detector exhibited 83% sensitivity and 97% specificity on a per-second basis.
We have developed and evaluated several dynamical machine-learning algorithms that were designed to track the presence and severity of tremor and dyskinesia with 1-s resolution by analyzing signals collected from Parkinson's disease (PD) patients wearing small numbers of hybrid sensors with both 3-D accelerometeric and surface-electromyographic modalities. We tested the algorithms on a 44-h signal database built from hybrid sensors worn by eight PD patients and four healthy subjects who carried out unscripted and unconstrained activities of daily living in an apartment-like environment. Comparison of the performance of our machine-learning algorithms against independent clinical annotations of disorder presence and severity demonstrates that, despite their differing approaches to dynamic pattern classification, dynamic neural networks, dynamic support vector machines, and hidden Markov models were equally effective in keeping error rates of the dynamic tracking well below 10%. A common set of experimentally derived signal features were used to train the algorithm without the need for subject-specific learning. We also found that error rates below 10% are achievable even when our algorithms are tested on data from a sensor location that is different from those used in algorithm training.
Parkinson’s disease (PD) can present with a variety of motor disorders that fluctuate throughout the day, making assessment a challenging task. Paper-based measurement tools can be burdensome to the patient and clinician and lack the temporal resolution needed to accurately and objectively track changes in motor symptom severity throughout the day. Wearable sensor-based systems that continuously monitor PD motor disorders may help to solve this problem, although critical shortcomings persist in identifying multiple disorders at high temporal resolution during unconstrained activity. The purpose of this study was to advance the current state of the art by (1) introducing hybrid sensor technology to concurrently acquire surface electromyographic (sEMG) and accelerometer data during unconstrained activity and (2) analyzing the data using dynamic neural network algorithms to capture the evolving temporal characteristics of the sensor data and improve motor disorder recognition of tremor and dyskinesia. Algorithms were trained (n = 11 patients) and tested (n = 8 patients; n = 4 controls) to recognize tremor and dyskinesia at 1-second resolution based on sensor data features and expert annotation of video recording during 4-hour monitoring periods of unconstrained daily activity. The algorithms were able to make accurate distinctions between tremor, dyskinesia, and normal movement despite the presence of diverse voluntary activity. Motor disorder severity classifications averaged 94.9% sensitivity and 97.1% specificity based on 1 sensor per symptomatic limb. These initial findings indicate that new sensor technology and software algorithms can be effective in enhancing wearable sensor-based system performance for monitoring PD motor disorders during unconstrained activities.
Automatic tracking of movement disorders in patients with Parkinson's disease (PD) is dependent on the ability of machine learning algorithms to resolve the complex and unpredictable characteristics of wearable sensor data. The challenge reflects the variety of movement disorders that fluctuate throughout the day which can be confounded by voluntary activities of daily life. Our approach is the development of multiple dynamic neural network (DNN) classifiers whose application are governed by a rule-based controller within the Integrated Processing and Understanding of Signals (IPUS) framework. Solutions are described for time-varying occurrences of tremor and dyskinesia, classified at 1 s resolution from surface electromyographic (sEMG) and tri-axial accelerometer (ACC) data acquired from patients with PD. The networks were trained and tested on separate datasets, respectively, while subjects performed unscripted and unconstrained activities in a home-like setting. Performance of the classifiers achieved an overall global error rate of less than 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.