Deep brain stimulation (DBS) may improve disabling tics in severely affected medication and behaviorally resistant Tourette syndrome (TS). Here we review all reported cases of TS DBS and provide updated recommendations for selection, assessment, and management of potential TS DBS cases based on the literature and implantation experience. Candidates should have a Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM V) diagnosis of TS with severe motor and vocal tics, which despite exhaustive medical and behavioral treatment trials result in significant impairment. Deep brain stimulation should be offered to patients only by experienced DBS centers after evaluation by a multidisciplinary team. Rigorous preoperative and postoperative outcome measures of tics and associated comorbidities should be used. Tics and comorbid neuropsychiatric conditions should be optimally treated per current expert standards, and tics should be the major cause of disability. Psychogenic tics, embellishment, and malingering should be recognized and addressed. We have removed the previously suggested 25-year-old age limit, with the specification that a multidisciplinary team approach for screening is employed. A local ethics committee or institutional review board should be consulted for consideration of cases involving persons younger than 18 years of age, as well as in cases with urgent indications. Tourette syndrome patients represent a unique and complex population, and studies reveal a higher risk for post-DBS complications. Successes and failures have been reported for multiple brain targets; however, the optimal surgical approach remains unknown. Tourette syndrome DBS, though still evolving, is a promising approach for a subset of medication refractory and severely affected patients.
Objective: We evaluated quantitative EEG (QEEG) measures as predictive biomarkers for the development of dementia in Parkinson disease (PD). Preliminary work shows that QEEG measures correlate with current PD cognitive state. A reliable predictive QEEG biomarker for PD dementia (PD-D) incidence would be valuable for studying PD-D, including treatment trials aimed at preventing cognitive decline in PD. Methods:A cohort of subjects with PD in our brain donation program utilizes annual premortem longitudinal movement and cognitive evaluation. These subjects also undergo biennial EEG recording. EEG from subjects with PD without dementia with follow-up cognitive evaluation was analyzed for QEEG measures of background rhythm frequency and relative power in ␦, , ␣, and  bands. The relationship between the time to onset of dementia and QEEG and other possible predictors was assessed by using Cox regression. Results:The hazard of developing dementia was 13 times higher for those with low background rhythm frequency (lower than the grand median of 8.5 Hz) than for those with high background rhythm frequency (p Ͻ 0.001). Hazard ratios (HRs) were also significant for Ͼ median bandpower (HR ϭ 3.0; p ϭ 0.004) compared to below, and for certain neuropsychological measures. The HRs for ␦, ␣, and  bandpower as well as baseline demographic and clinical characteristics were not significant. Conclusion:The QEEG measures of background rhythm frequency and relative power in the band are potential predictive biomarkers for dementia incidence in PD. These QEEG biomarkers may be useful in complementing neuropsychological testing for studying PD-D incidence.
Objective To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with PD would affect the activity of both motor and non-motor networks, we applied intraoperative fMRI to patients receiving DBS. Patients and Methods Ten patients receiving STN DBS for PD underwent intraoperative 1.5T fMRI during high frequency stimulation delivered via an external pulse generator. The study was conducted between the dates of January 1, 2013 and September 30, 2014. Results We observed blood oxygen level dependent (BOLD) signal changes (FDR<.001) in the motor circuitry, including primary motor, premotor, and supplementary motor cortices, thalamus, pedunculopontine nucleus (PPN), and cerebellum, as well as in the limbic circuitry, including cingulate and insular cortices. Activation of the motor network was observed also after applying a Bonferroni correction (p<.001) to our dataset, suggesting that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. Conclusions These findings support the modulatory role of STN DBS on the activity of motor and non-motor networks, and suggest complex mechanisms at the basis of the efficacy of this treatment modality. Furthermore, these results suggest that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. With further studies combining the use of real time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning, but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.