The importance of nonlinear acoustic wave propagation and ultrasound-induced cavitation in the acceleration of thermal lesion production by high intensity focused ultrasound was investigated experimentally and theoretically in a transparent protein-containing gel. A numerical model that accounted for nonlinear acoustic propagation was used to simulate experimental conditions. Various exposure regimes with equal total ultrasound energy but variable peak acoustic pressure were studied for single lesions and lesion stripes obtained by moving the transducer. Static overpressure was applied to suppress cavitation. Strong enhancement of lesion production was observed for high amplitude waves and was supported by modeling. Through overpressure experiments it was shown that both nonlinear propagation and cavitation mechanisms participate in accelerating lesion inception and growth. Using B-mode ultrasound, cavitation was observed at normal ambient pressure as weakly enhanced echogenicity in the focal region, but was not detected with overpressure. Formation of tadpole-shaped lesions, shifted toward the transducer, was always observed to be due to boiling. Boiling bubbles were visible in the gel and were evident as strongly echogenic regions in B-mode images. These experiments indicate that nonlinear propagation and cavitation accelerate heating, but no lesion displacement or distortion was observed in the absence of boiling.
Significance High intensity focused ultrasound (HIFU) therapy is a promising, clinically adopted method of noninvasive tissue ablation used to treat both benign and malignant conditions. This work presents, to our knowledge, the first in vivo validation of a previously developed HIFU-based method that allows for noninvasive fractionation of targeted tissue into subcellular debris—boiling histotripsy—in a large animal model. While fractionating the targeted soft tissue, boiling histotripsy is shown to spare the adjacent connective tissue structures such as blood vessels. The process can be readily targeted and monitored by B-mode ultrasound. The resulting tissue debris are liquid, which provides a potential clinical benefit over thermal ablation in the treatment of tumors that exert uncomfortable pressure on surrounding tissues.
Purpose We have developed a new method of lithotripsy that uses short, broadly focused bursts of ultrasound rather than shock waves to fragment stones. This study investigated the characteristics of stone comminution by burst wave lithotripsy in vitro. Materials and Methods Artificial and natural stones (mean 8.2±3.0 mm, range 5–15 mm) were treated with ultrasound bursts using a focused transducer in a water bath. Stones were exposed to bursts with focal pressure amplitude ≤6.5 MPa at 200 Hz burst repetition rate until completely fragmented. Ultrasound frequencies of 170 kHz, 285 kHz, and 800 kHz were applied using 3 different transducers. The time to achieve fragmentation for each stone type was recorded, and fragment size distribution was measured by sieving. Results Stones exposed to ultrasound bursts were fragmented at focal pressure amplitudes ≥2.8 MPa at 170 kHz. Fractures appeared along the stone surface, resulting in fragments separating at the surface nearest to the transducer until the stone was disintegrated. All natural and artificial stones were fragmented at the highest focal pressure of 6.5 MPa with treatment durations between a mean of 36 seconds for uric acid to 14.7 minutes for cystine stones. At a frequency of 170 kHz, the largest artificial stone fragments were <4 mm. Exposures at 285 kHz produced only fragments <2 mm, and 800 kHz produced only fragments <1 mm. Conclusions Stone comminution with burst wave lithotripsy is feasible as a potential noninvasive treatment method for nephrolithiasis. Adjusting the fundamental ultrasound frequency allows control of stone fragment size.
Purpose Focused ultrasound has the potential to expel small stones or residual stone fragments from the kidney, or move obstructing stones to a nonobstructing location. We evaluated the efficacy and safety of ultrasonic propulsion in a live porcine model. Materials and Methods Calcium oxalate monohydrate kidney stones and laboratory model stones (2 to 8 mm) were ureteroscopically implanted in the renal pelvicalyceal system of 12 kidneys in a total of 8 domestic swine. Transcutaneous ultrasonic propulsion was performed using an HDI C5-2 imaging transducer (ATL/Philips, Bothell, Washington) and the Verasonics® diagnostic ultrasound platform. Successful stone relocation was defined as stone movement from the calyx to the renal pelvis, ureteropelvic junction or proximal ureter. Efficacy and procedure time was determined. Three blinded experts evaluated histological injury to the kidney in the control, sham treatment and treatment arms. Results All 26 stones were observed to move during treatment and 17 (65%) were relocated successfully to the renal pelvis (3), ureteropelvic junction (2) or ureter (12). Average ± SD successful procedure time was 14 ± 8 minutes and a mean of 23 ± 16 ultrasound bursts, each about 1 second in duration, were required. There was no evidence of gross or histological injury to the renal parenchyma in kidneys exposed to 20 bursts (1 second in duration at 33-second intervals) at the same output (2,400 W/cm2) used to push stones. Conclusions Noninvasive transcutaneous ultrasonic propulsion is a safe, effective and time efficient means to relocate calyceal stones to the renal pelvis, ureteropelvic junction or ureter. This technology holds promise as a useful adjunct to surgical management for renal calculi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.