BACKGROUND Improper mechanical ventilation can exacerbate acute lung damage causing a secondary ventilator induced lung injury (VILI). We hypothesize that VILI can be reduced by modifying specific components of the ventilation waveform (mechanical breath) and studied the impact of airway pressure release ventilation (APRV) and controlled mandatory ventilation (CMV) on the lung micro-anatomy (alveoli and conducting airways). The distribution of gas during inspiration and expiration and the strain generated during mechanical ventilation in the micro-anatomy (micro-strain) were calculated. STUDY DESIGN Rats were anesthetized, surgically prepared and randomized into one uninjured Control group (n=2) and four groups with lung injury: 1)APRV 75% (n=2)–time at expiration (TLow) set to terminate appropriately at 75% of Peak Expiratory Flow Rate (PEFR); 2)APRV 10% (n=2)-TLow set to terminate inappropriately at 10% of PEFR; 3)CMV with PEEP 5cmH2O (PEEP 5;n=2) or 4)PEEP 16cmH2O (PEEP 16;n=2). Lung injury was induced in the experimental groups by Tween lavage and ventilated with their respective settings. Lungs were fixed at peak inspiration and end expiration for standard histology. Conducting airway and alveolar air space areas were quantified and conducting airway micro-strain calculated. RESULTS All lung injury groups redistributed inspired gas away from alveoli into the conducting airways. APRV 75% minimized gas redistribution and micro-strain in the conducting airways and provided the alveolar air space occupancy most similar to Control at both inspiration and expiration. CONCLUSIONS In an injured lung, APRV 75% maintained micro-anatomical gas distribution similar to that of the normal lung. The lung protection demonstrated in previous studies using APRV 75% may be due to a more homogeneous distribution of gas at the micro-anatomical level as well as a reduction in conducting airway micro-strain.
Continuous mandatory ventilation in normal rats for 6 hours with Vt and PEEP settings similar to those of surgery patients caused ALI. Preemptive application of APRV blocked early drivers of lung injury, preventing ARDS. Our data suggest that APRV applied early could reduce the incidence of ARDS in patients at risk.
Increased positive-end expiratory pressure and reduced time at low pressure (decreased T(low)) reduced alveolar microstrain. Reduced microstrain and improved alveolar recruitment using an APRV T-PEFR to PEFR ratio of 75% may be the mechanism of lung protection seen in previous clinical and animal studies.
BackgroundLung injury is often studied without consideration for pathologic changes in the chest wall. In order to reduce the incidence of lung injury using preemptive mechanical ventilation, it is important to recognize the influence of altered chest wall mechanics on disease pathogenesis. In this study, we hypothesize that airway pressure release ventilation (APRV) may be able to reduce the chest wall elastance associated with an extrapulmonary lung injury model as compared with low tidal volume (LVt) ventilation.MethodsFemale Yorkshire pigs were anesthetized and instrumented. Fecal peritonitis was established, and the superior mesenteric artery was clamped for 30 min to induce an ischemia/reperfusion injury. Immediately following injury, pigs were randomized into (1) LVt (n = 3), positive end-expiratory pressure (PEEP) 5 cmH2O, Vt 6 cc kg−1, FiO2 21 %, and guided by the ARDSnet protocol or (2) APRV (n = 3), PHigh 16–22 cmH2O, PLow 0 cmH2O, THigh 4.5 s, TLow set to terminate the peak expiratory flow at 75 %, and FiO2 21 %. Pigs were monitored continuously for 48 h. Lung samples and bronchoalveolar lavage fluid were collected at necropsy.ResultsLVt resulted in mild acute respiratory distress syndrome (ARDS) (PaO2/FiO2 = 226.2 ± 17.1 mmHg) whereas APRV prevented ARDS (PaO2/FiO2 = 465.7 ± 66.5 mmHg; p < 0.05). LVt had a reduced surfactant protein A concentration and increased histologic injury as compared with APRV. The plateau pressure in APRV (34.3 ± 0.9 cmH2O) was significantly greater than LVt (22.2 ± 2.0 cmH2O; p < 0.05) yet transpulmonary pressure between groups was similar (p > 0.05). This was because the pleural pressure was significantly lower in LVt (7.6 ± 0.5 cmH2O) as compared with APRV (17.4 ± 3.5 cmH2O; p < 0.05). Finally, the elastance of the lung, chest wall, and respiratory system were all significantly greater in LVt as compared with APRV (all p < 0.05).ConclusionsAPRV preserved surfactant and lung architecture and maintenance of oxygenation. Despite the greater plateau pressure and tidal volumes in the APRV group, the transpulmonary pressure was similar to that of LVt. Thus, the majority of the plateau pressure in the APRV group was distributed as pleural pressure in this extrapulmonary lung injury model. APRV maintained a normal lung elastance and an open, homogeneously ventilated lung without increasing lung stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.