We generalize the first author's construction of intersection spaces to the case of stratified pseudomanifolds of stratification depth 1 with twisted link bundles, assuming that each link possesses an equivariant Moore approximation for a suitable choice of structure group. As a by-product, we find new characteristic classes for fiber bundles admitting such approximations. For trivial bundles and flat bundles whose base has finite fundamental group these classes vanish. For oriented closed pseudomanifolds, we prove that the reduced rational cohomology of the intersection spaces satisfies global Poincaré duality across complementary perversities if the characteristic classes vanish. The signature of the intersection spaces agrees with the Novikov signature of the top stratum. As an application, these methods yield new results about the Goresky-MacPherson intersection homology signature of pseudomanifolds. We discuss several nontrivial examples, such as the case of flat bundles and symplectic toric manifolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.