This comparative study was conducted to provide a detailed, comprehensive description of the innervation to the follicle-sinus complex (F-SC) of mystacial vibrissae and to determine if interspecies variability in the innervation of the F-SCs may be related to differences in the structure or existence of barrels in the primary somatosensory (SI) cortex. Two silver techniques (Winkelmann on 100 micron-thick-frozen sections and Sevier-Munger on 8 micron-thick paraffin sections) were applied to comparable mystacial skin samples from adult hamsters, mice, rats, gerbils, rabbits, guinea pigs and cats. The basic structure and innervation of the F-SCs is the same in all species. Six distinct populations of sensory receptors are identified at consistent locations: Merkel endings in the epidermal rete ridge collar at the mouth of the follicle; circularly disposed presumptive lanceolate, Ruffini, and free nerve endings (FNE) in the inner conical body; longitudinal lanceolate endings in a dense palisade in the mesenchymal sheath at the level of the ring sinus; Merkel endings in the external root sheath at the level of the ring sinus; scattered corpuscular and FNEs (possibly lanceolate or Ruffini endings) in the cavernous sinus; and a few FNEs in the dermal papilla. In each F-SC, the first two locations are supplied by several superficial vibrissal nerves that arise from several small nerves that also innervate the skin between the vibrissae. These superficial nerves may innervate more than one F-SC. The next three locations are supplied by a single large deep vibrissal nerve that is derived directly from a row fascicle of the infraorbital nerve. Each deep nerve innervates a single F-SC. The source of the papilla innervation was not found. The ring sinus locations are consistently the most heavily innervated in all species. The number of axons in comparable deep vibrissal nerves is similar among the rodents, higher in the cat, and lower in the rabbit. Innervation of the inner conical body varies considerably, being dense in species that vigorously whisk their vibrissae (hamster, mouse, rat, and gerbil) and sparse or absent in species that minimally or never whisk (guinea pig, rabbit, and cat). Innervation to the cavernous sinus is sparse particularly in hamsters and gerbils. The innervation to the rete ridge is uniquely absent in the rabbit.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.