The transcription factor NFκB is a regulator of inflammatory and adaptive immune responses, yet only IκBα has been shown to limit NFκB activation and inflammatory responses. We investigated another negative feedback regulator, IκBε, in regulating B cell proliferation and survival. The loss of IκBε showed increased B cell proliferation and survival in response to both antigenic and innate stimulation. NFκB activity was elevated during late phase activation, but the dimer composition was stimulus-specific. In response to IgM, cRel dimers were elevated in IκBε-deficient cells, yet in response to LPS, RelA dimers were elevated also. The corresponding dimer-specific sequences were found in the promoters of hyper-activated genes. Using a mathematical model of the NFκB signaling system in B cells, we demonstrated that kinetic considerations of the IKK signaling input and IκBε’s interactions with RelA- and cRel-specific dimers could account for this stimulus-specificity. cRel is known to be the key regulator of B cell expansion. We found that RelA-specific phenotype in LPS-stimulated cells was physiologically relevant: unbiased transcriptome profiling identified the inflammatory cytokine, interleukin 6 (IL-6) to be hyper-activated in IκBε−/− B cells. When the IL-6 receptor was blocked, LPS-responsive IκBε−/− B cell proliferation was specifically reduced to near wild type levels. Our results provide novel evidence of a critical role of immune-response functions for IκBε in B cells; it regulates proliferative capacity via at least two mechanisms involving cRel and RelA-containing NFκB dimers. This study illustrates the importance of kinetic considerations in understanding the functional specificity of negative feedback regulators.
The purpose of these studies was to determine the minimal requirements to induce granzyme B, cytotoxic granules and perforin-dependent lytic capacity. To our surprise, both IL-2 and IL-15 induced not only proliferation, but also profound granzyme B and lytic capacity from CD8 + T cells in the absence of antigen or TCR-stimulation. Mouse splenocytes were incubated with mouse r-IL-2 or r-IL-15 for three days, tested by anti-CD3 redirected lysis and examined for intracellular granzyme B and for T cell activation markers. With 10 −8 M IL-2 or IL-15, there was excellent lytic activity at 1:1 effector to target ratios mediated by T cells from wild type but not from perforin-gene-ablated mice, consistent with multiclonal activation. Lower interleukin concentrations induced less lytic activity. Granzyme B was undetectable on day 0, and greatly elevated on day 3 in CD44 hi CD8 + T cells as detected by flow cytometry. Cytokines alone elevated the granzyme B as much as concanavalin A combined with the cytokines. Some ex vivo CD8 + T cells were CD122 + , as were the cultured granzyme B + cells, thus both populations had low affinity receptors for the interleukins. Only some of the activated cells were proliferating as detected by CFSE labeling. When the cytokines were withdrawn, the cells lost lytic activity within 24 hours and then within the next 24 hours, died. Our results suggest that high concentrations of either IL-2 or IL-15 will activate the lytic capacity and granzyme B expression of many T cells and that antigen recognition is not required.
Programmed cell death (PCD) occurs widely in species from every kingdom of life. It has been shown to be an integral aspect of development in multicellular organisms, and it is an essential component of the immune response to infectious agents. An analysis of the phylogenetic origin of PCD now shows that it evolved independently several times, and it is fundamental to basic cellular physiology. Undoubtedly, PCD pervades all life at every scale of analysis. These considerations provide a backdrop for understanding the complexity of intertwined, but independent, cell death programs that operate within the immune system. In particular, the contributions of apoptosis, autophagy, and necrosis in the resolution of an immune response are considered.
Perforin, a membrane-permeabilizing protein, is important to T cell cytotoxic action. Perforin has potential to damage the T cell in the endoplasmic reticulum (ER), is sequestered in granules, and later is exocytosed to kill cells. In the ER and after exocytosis, calcium and pH favor perforin activity. We found a novel perforin inhibitor associated with cytotoxic T cell granules and termed it Cytotoxic Regulatory Protein 2 (CxRP2). CxRP2 blocked lysis by granule extracts, recombinant perforin and T cells. Its effects lasted for hours. CxRP2 was calcium stable and refractory to inhibitors of granzyme and cathepsin proteases. Through mass spectrometric analysis of active 50-100 kD proteins, we identified CxRP2 candidates. Protein disulfide isomerase A3 was the strongest candidate but was unavailable for testing; however, protein disulfide isomerase A1 had CxRP2 activity. Our results indicate that protein disulfide isomerases, in the ER or elsewhere, may protect T cells from their own perforin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.