Structures of the enzyme complexed with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol were determined by X-ray crystallography at a resolution of 2.1 A and to a refinement R value of 18.3% for a monoclinic (P2(1)) form and to 2.4 A and an R value of 18.9% for a triclinic crystal form. The pentafluorobenzyl alcohol does not react, due to electron withdrawal by the fluorine atoms. A structure with NAD+ and p-bromobenzyl alcohol in the monoclinic form was also determined at 2.5 A and an R value of 16.7%. The conformations of the subunits in the monoclinic and triclinic crystal forms are very similar. The dimer is the asymmetric unit, and a rigid body rotation closes the cleft between the coenzyme and catalytic domains upon complex formation. In the monoclinic form, this conformational change is described by a rotation of 9 degrees in one subunit and 10 degrees in the other. The pentafluoro- and p-bromobenzyl alcohols bind in overlapping positions. The hydroxyl group of each alcohol is ligated to the catalytic zinc and participates in an extensive hydrogen-bonded network that includes the imidazole group of His-51, which can act as a base and shuttle a proton to solvent. The hydroxymethyl carbon of the pentafluorobenzyl alcohol is 3.4 A from C4 of the nicotinamide ring, and the pro-R hydrogen is in a good position for direct transfer to C4. The p-bromobenzyl alcohol may react after small rotations around single bonds of the alcohol. These structures should approximate the active Michaelis-Menten complexes.
Primary and secondary kD/kT and kH/kT kinetic isotope effects have been studied as a probe of hydrogen tunneling in the oxidation of benzyl alcohol catalyzed by horse liver alcohol dehydrogenase (LADH). In the case of the wild-type enzyme, isotope effects at 25 degrees C do not clearly support hydrogen tunneling; this result is consistent with a reaction rate that is partially limited by the release of product benzaldehyde. The three-dimensional structure for LADH was used to design site-directed mutations in an effort to enhance the rate of the product release step and to "unmask" tunneling. Substitutions that increased the size of the alcohol binding pocket resulted in minor changes in isotope effects. By contrast, reduction in the size of the alcohol binding pocket through substitution at residues 57 and 93, which are in van der Waals contact with bound alcohol substrate, produced a clear demonstration of protium tunneling from the breakdown of the semiclassical relationship between kD/kT and kH/kT isotope effects. The temperature dependence of kD/kT isotope effects has also been pursued, leading to the conclusion that tunneling does, in fact, occur in the reaction catalyzed by wild-type LADH. Despite the unmasking of protium tunneling in site-directed mutants, substitutions that decrease the size of the alcohol pocket appear to result in less extensive tunneling in the hydride transfer. It is noteworthy that the mutant enzyme (Leu57-->Phe), which shows the greatest evidence of tunneling, has the same catalytic efficiency (Vmax/Km) as the wild-type enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)
Transient kinetic data for partial reactions of alcohol dehydrogenase and simulations of progress curves have led to estimates of rate constants for the following mechanism, at pH 8.0 and 25 degrees C: E in equilibrium E-NAD+ in equilibrium *E-NAD+ in equilibrium E-NAD(+)-RCH2OH in equilibrium E-NAD+-RCH2O- in equilibrium *E-NADH-RCHO in equilibrium E-NADH-RCHO in equilibrium E-NADH in equilibrium E. Previous results show that the E-NAD+ complex isomerizes with a forward rate constant of 620 s-1 [Sekhar, V. C., & Plapp, B. V. (1988) Biochemistry 27, 5082-5088]. The enzyme-NAD(+)-alcohol complex has a pK value of 7.2 and loses a proton rapidly (greater than 1000 s-1). The transient oxidation of ethanol is 2-fold faster in D2O, and proton inventory results suggest that the transition state has a charge of -0.3 on the substrate oxygen. Rate constants for hydride ion transfer in the forward or reverse reactions were similar for short-chain aliphatic substrates (400-600 s-1). A small deuterium isotope effect for transient oxidation of longer chain alcohols is apparently due to the isomerization of the E-NAD+ complex. The transient reduction of aliphatic aldehydes showed no primary deuterium isotope effect; thus, an isomerization of the E-NADH-aldehyde complex is postulated, as isomerization of the E-NADH complex was too fast to be detected. The estimated microscopic rate constants show that the observed transient reactions are controlled by multiple steps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.