a b s t r a c tWe give a systematic method for discretizing Hamiltonian partial differential equations (PDEs) with constant symplectic structure, while preserving their energy exactly. The same method, applied to PDEs with constant dissipative structure, also preserves the correct monotonic decrease of energy. The method is illustrated by many examples. In the Hamiltonian case these include: the sine-Gordon, Korteweg-de Vries, nonlinear Schrödinger, (linear) time-dependent Schrödinger, and Maxwell equations. In the dissipative case the examples are: the Allen-Cahn, Cahn-Hilliard, Ginzburg-Landau, and heat equations.
Abstract. We show that Kahan's discretization of quadratic vector fields is equivalent to a Runge-Kutta method. When the vector field is Hamiltonian on either a symplectic vector space or a Poisson vector space with constant Poisson structure, the map determined by this discretization has a conserved modified Hamiltonian and an invariant measure, a combination previously unknown amongst Runge-Kutta methods applied to nonlinear vector fields. This produces large classes of integrable rational mappings in two and three dimensions, explaining some of the integrable cases that were previously known.
RKMK methods and Crouch-Grossman methods are two classes of Lie group methods. The former is using flows and commutators of a Lie algebra of vector fields as a part of the method definition. The latter uses only compositions of flows of such vector fields, but the number of flows which needs to be computed is much higher than in the RKMK methods. We present a new type of methods which avoids the use of commutators, but which has a much lower number of flow computations than the Crouch-Grossman methods. We argue that the new methods may be particularly useful when applied to problems on homogeneous manifolds with large isotropy groups, or when used for stiff problems. Numerical experiments verify these claims when applied to a problem on the orthogonal Stiefel manifold, and to an example arising from the semidiscretisation of a linear inhomogeneous heat conduction problem.
Many numerical algorithms involve computations in Lie algebras, like composition and splitting methods, methods involving the Baker-Campbell-Hausdorff formula and the recently developed Lie group methods for integration of differential equations on manifolds. This paper is concerned with complexity and optimization of such computations in the general case where the Lie algebra is free, i.e. no specific assumptions are made about its structure. It is shown how transformations applied to the original variables of a problem yield elements of a graded free Lie algebra whose homogeneous subspaces are of much smaller dimension than the original ungraded one. This can lead to substantial reduction of the number of commutator computations. Witt's formula for counting commutators in a free Lie algebra is generalized to the case of a general grading. This provides good bounds on the complexity. The interplay between symbolic and numerical computations is also discussed, exemplified by the new Matlab toolbox 'DiffMan'.
Appeared as section 5 in [17].
AbstractWe develop the theory of mixed finite elements in terms of special inverse systems of complexes of differential forms, defined over cellular complexes. Inclusion of cells corresponds to pullback of forms. The theory covers for instance composite piecewise polynomial finite elements of variable order over polyhedral grids. Under natural algebraic and metric conditions, interpolators and smoothers are constructed, which commute with the exterior derivative and whose product is uniformly stable in Lebesgue spaces. As a consequence we obtain not only eigenpair approximation for the Hodge-Laplacian in mixed form, but also variants of Sobolev injections and translation estimates adapted to variational discretizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.