We are interested in using wearable sensor data to analyze detailed characteristics of movement, such as repeatability and variability of movement patterns, over days and months to accurately capture real-world infant behavior. The purpose of this study was to explore Sample Entropy (SampEn) from wearable sensor data as a measure of variability of spontaneous infant leg movement and as a potential marker of the development of neuromotor control. We hypothesized that infants at risk (AR) of developmental delay would present significantly lower SampEn values than infants with typical development (TD). Participants were 11 infants with TD and 20 infants AR. We calculated SampEn from 1–4 periods of data of 7200 samples in length when the infants were actively playing across the day. The infants AR demonstrated smaller SampEn values (median 0.21) than the infants with TD (median 1.20). Lower values of SampEn indicate more similarity in patterns across time, and may indicate more repetitive, less exploratory behavior in infants AR compared to infants with TD. In future studies, we would like to expand to analyze longer periods of wearable sensor data and/or determine how to optimally sample representative periods across days and months.
Little information exists on how body weight (BW) support influences running biomechanics. The study aim was to determine how reducing BW by 50%-80% influences muscle activity while running at different speeds. Subjects (n = 7) ran at 100%, 115%, 125% of preferred speed at 100%, 50%, 40%, 30%, 20% of BW per speed. Average (AVG) electromyography of the rectified signal was compared (within subject design; 3-speeds × 5-BW, repeated measures ANOVAs; biceps femoris [BF], rectus femoris [RF], tibialis anterior [TA], gastrocnemius [GA]). RF, BF, and GA AVG were not influenced by BW-speed interaction (p > .05) and increased across speeds (p < .05). RF and GA AVG signal was reduced as BW was reduced (p < .05), but BF only tended to be different (p = .08). TA was influenced by BW-speed interaction (p < .05) with EMG decreasing across BW (p < .05) while increasing across speeds except at 100% BW. Overall, muscle activity increased with speed and decreased by BW reductions.
Peripheral arterial disease (PAD) produces abnormal gait and disproportionately affects older individuals. The current study investigated PAD gait biomechanics in young and older subjects. Sixty-one (31 < 65 years, age: 57.4 ± 5.3 years and 30 ≥ 65 years; age: 72.2 ± 5.4 years) patients with PAD and 52 healthy age matched controls were included. Patients with PAD were tested during pain free walking and compared to matched healthy controls. Joint kinematics and kinetics (torques) were compared using a 2 × 2 ANOVA (Groups: PAD vs. Control, Age: Younger vs. Older). Patients with PAD had significantly increased ankle and decreased hip range of motion during the stance phase as well as decreased ankle dorsiflexor torque compared to controls. Gait changes in older individuals are largely constrained to time-distance parameters. Joint kinematics and kinetics are significantly altered in patients with PAD during pain free ambulation. Symptomatic PAD produces a consistent ambulatory deficit across ages definable by advanced biomechanical analysis. The most important finding of the current study is that gait, in the absence of PAD and other ambulatory comorbidities, does not decline significantly with age based on advanced biomechanical analysis. Therefore, previous studies must be examined in the context of potential PAD patients being present in the population and future ambulatory studies must include PAD as a confounding factor when assessing the gait function of elderly individuals.
Neither the mechanism of BW support nor style of DWR influenced gastrocnemius or tibialis anterior muscle activity during running at the same stride frequency. However, rectus femoris and biceps femoris muscle activity were influenced by not only the mechanism of BW support but also the style of DWR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.