Urbanization is one of the major forms of habitat alteration occurring at the present time. Although this is typically deleterious to biodiversity, some species flourish within these human-modified landscapes, potentially leading to negative and/or positive interactions between people and wildlife. Hence, up-to-date assessment of urban wildlife populations is important for developing appropriate management strategies. Surveying urban wildlife is limited by land partition and private ownership, rendering many common survey techniques difficult. Garnering public involvement is one solution, but this method is constrained by the inherent biases of non-standardised survey effort associated with voluntary participation. We used a television-led media approach to solicit national participation in an online sightings survey to investigate changes in the distribution of urban foxes in Great Britain and to explore relationships between urban features and fox occurrence and sightings density. Our results show that media-based approaches can generate a large national database on the current distribution of a recognisable species. Fox distribution in England and Wales has changed markedly within the last 25 years, with sightings submitted from 91% of urban areas previously predicted to support few or no foxes. Data were highly skewed with 90% of urban areas having <30 fox sightings per 1000 people km−2. The extent of total urban area was the only variable with a significant impact on both fox occurrence and sightings density in urban areas; longitude and percentage of public green urban space were respectively, significantly positively and negatively associated with sightings density only. Latitude, and distance to nearest neighbouring conurbation had no impact on either occurrence or sightings density. Given the limitations associated with this method, further investigations are needed to determine the association between sightings density and actual fox density, and variability of fox density within and between urban areas in Britain.
Simple SummaryHumans and domestic dogs may alarm wild animals, and the extent of this can be measured using Flight Initiation Distance (FID). Golden marmots are preyed on by globally-endangered predators such as the snow leopard, and are baited by humans with dogs, potentially causing FID to increase. We measured FID in 72 marmots from four colonies in the Karakoram range, Pakistan. Marmots were approached by a person on foot with a leashed dog, and by a person on their own to compare FID between the two. Additionally, we recorded background signs of human activity, namely roads, and presence of people other than the experimenters. We measured other aspects of the environment that might have affected marmot behavior such as marmot group size and age/sex, how visible each colony was, and colony substrate. The dog caused greater FID than the person alone, and adult marmots nearer to roads showed greater FID. However, marmot age and colony substrate had more marked impacts on FID, which was also greater at lower elevations where there were clusters of human settlements and livestock pasture. Further research should be conducted to explore some of these effects further and to find out whether increased FID affects marmot survival and breeding success.AbstractHumans and dogs initiate measurable escape responses in wild animals including flight initiation distance (FID), with potentially negative consequences. Golden marmots are important prey for endangered carnivores and are subject to human persecution including via marmot baiting with dogs. We quantified FID at four marmot colonies (72 individuals) in the Karakoram range, Pakistan in response to approach by a pedestrian with a leashed dog versus approach by a pedestrian alone (i.e., a control). Additionally, we related FID to background variables of human activity, namely proximity to roads, and presence of other pedestrians in the vicinity of study sites during sampling. We also controlled for potential environmental and social covariates (e.g., group size, age and sex, and colony substrate). Dogs initiated greater FID than pedestrians alone, and there was evidence that roads increased FID. However, these effects were weaker than those of marmot age and colony substrate. FID was greater at lower elevations, but this may reflect the clustering in these zones of human settlements and livestock pasture. Further work is needed elucidate the importance of colony substrate (linked to ease of human persecution), the effect of settlements and pasture, and the impact of increased FID on marmot fitness.
Globally there are many examples of synanthropic carnivores exploiting growth in urbanisation. As carnivores can come into conflict with humans and are potential vectors of zoonotic disease, assessing densities in suburban areas and identifying factors that influence them are necessary to aid management and mitigation. However, fragmented, privately owned land restricts the use of conventional carnivore surveying techniques in these areas, requiring development of novel methods. We present a method that combines questionnaire distribution to residents with field surveys and GIS, to determine relative density of two urban carnivores in England, Great Britain. We determined the density of: red fox (Vulpes vulpes) social groups in 14, approximately 1km2 suburban areas in 8 different towns and cities; and Eurasian badger (Meles meles) social groups in three suburban areas of one city. Average relative fox group density (FGD) was 3.72 km-2, which was double the estimates for cities with resident foxes in the 1980’s. Density was comparable to an alternative estimate derived from trapping and GPS-tracking, indicating the validity of the method. However, FGD did not correlate with a national dataset based on fox sightings, indicating unreliability of the national data to determine actual densities or to extrapolate a national population estimate. Using species-specific clustering units that reflect social organisation, the method was additionally applied to suburban badgers to derive relative badger group density (BGD) for one city (Brighton, 2.41 km-2). We demonstrate that citizen science approaches can effectively obtain data to assess suburban carnivore density, however publicly derived national data sets need to be locally validated before extrapolations can be undertaken. The method we present for assessing densities of foxes and badgers in British towns and cities is also adaptable to other urban carnivores elsewhere. However this transferability is contingent on species traits meeting particular criteria, and on resident responsiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.