The acute neurotoxicity of oligomeric forms of amyloid-β 1-42 (Aβ) is implicated in the pathogenesis of Alzheimer’s disease (AD). However, how these oligomers might first impair neuronal function at the onset of pathology is poorly understood. Here we have examined the underlying toxic effects caused by an increase in levels of intracellular Aβ, an event that could be important during the early stages of the disease. We show that oligomerised Aβ induces a rapid enhancement of AMPA receptor-mediated synaptic transmission (EPSCA) when applied intracellularly. This effect is dependent on postsynaptic Ca2+ and PKA. Knockdown of GluA1, but not GluA2, prevents the effect, as does expression of a S845-phosphomutant of GluA1. Significantly, an inhibitor of Ca2+-permeable AMPARs (CP-AMPARs), IEM 1460, reverses the increase in the amplitude of EPSCA. These results suggest that a primary neuronal response to intracellular Aβ oligomers is the rapid synaptic insertion of CP-AMPARs.
Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear.
Background and Purpose: The midbrain periaqueductal grey (PAG) plays a central role in modulating pain through a descending pathway that projects indirectly to the spinal cord via the rostroventral medial medulla (RVM). While opioids are potent analgesics that target the PAG, their cellular actions on descending projection neurons are unclear. Experimental Approach: Patch clamp recordings in voltage-and current-clamp mode were made from acutely prepared PAG slices from animals that received retrograde tracer injections into the RVM. Key Results: The μ-agonist DAMGO reduced GABAergic evoked inhibitory postsynaptic currents (IPSCs) in retro-labelled, RVM-projecting neurons to a greater extent than in unlabelled neurons. The κ-opioid agonist U69593 reduced evoked IPSCs to a similar extent in both neuronal groups, while the δ-opioid agonist deltorphin-II was without effect. DAMGO and U69593 both produced a reduction in the rate, but not amplitude of spontaneous miniature IPSCs and asynchronous evoked IPSCs in retrolabelled neurons. DAMGO and U69593 also suppressed glutamatergic EPSCs in retro-labelled and unlabelled neurons. The DAMGO inhibition of evoked EPSCs, however, was less than that for evoked IPSCs in retro-labelled, but not unlabelled neurons. In current clamp, DAMGO produced a depolarizing increase in evoked postsynaptic potentials in retro-labelled neurons, but directly inhibited unlabelled neurons. Conclusion and Implications: These findings suggest that μ-opioids activate the descending analgesic pathway from the midbrain PAG by a combination of presynaptic disinhibition of RVM-projecting neurons and postsynaptic inhibition of presumptive interneurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.