Recent advancements in radio frequency machine learning (RFML) have demonstrated the use of raw in-phase and quadrature (IQ) samples for multiple spectrum sensing tasks. Yet, deep learning techniques have been shown, in other applications, to be vulnerable to adversarial machine learning (ML) techniques, which seek to craft small perturbations that are added to the input to cause a misclassification. The current work differentiates the threats that adversarial ML poses to RFML systems based on where the attack is executed from: direct access to classifier input, synchronously transmitted over the air (OTA), or asynchronously transmitted from a separate device. Additionally, the current work develops a methodology for evaluating adversarial success in the context of wireless communications, where the primary metric of interest is bit error rate and not human perception, as is the case in image recognition. The methodology is demonstrated using the well known Fast Gradient Sign Method to evaluate the vulnerabilities of raw IQ based Automatic Modulation Classification and concludes RFML is vulnerable to adversarial examples, even in OTA attacks. However, RFML domain specific receiver effects, which would be encountered in an OTA attack, can present significant impairments to adversarial evasion.
Wireless systems are vulnerable to various attacks such as jamming and eavesdropping due to the shared and broadcast nature of wireless medium. To support both attack and defense strategies, machine learning (ML) provides automated means to learn from and adapt to wireless communication characteristics that are hard to capture by hand-crafted features and models. This article discusses motivation, background, and scope of research efforts that bridge ML and wireless security. Motivated by research directions surveyed in the context of ML for wireless security, ML-based attack and defense solutions and emerging adversarial ML techniques in the wireless domain are identified along with a roadmap to foster research efforts in bridging ML and wireless security.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.