Demands in energy storage require a significant improvement in the energy density of battery systems. Therefore innovative systems with a substantially higher specific energy and improved cycle life have to be developed. The combination of Magnesium and Sulfur in a galvanic element addresses several advantages, such as natural abundance, operational safety and a high volumetric capacity. However the research so far was hindered because a stable electrolyte for Mg-S-Batteries was missing [1]. Muldoon et. al. developed a stable and reversibly working non-nucleophilic electrolyte based on a recrystallized Mg2+ salt complex [Mg(µ-Cl)3(THF)6][HMDSAlCl3] (HMDS=hexamethyldisilazid) [2]. This crystalline electrolyte salt though could only be obtained in THF, revealing a disadvantageous overcharging and fast capacity fading [2]. A break-through in Mg/S battery performance was obtained by Fichtner et. al. They at first synthesized a one-step routine between [(HMDS)2Mg]=magnesium bis(hexamethyldisilazid) and AlCl3in different ethers, enhancing solvent choice and possibility of neglecting aforementioned disadvantages [3]. Furthermore a magnesium-anode enhances safety of Mg-S-battery, due to the missing tendency of dendrite formation [4]. Safety as well as capacity and scalability of fabrication of a battery are important factors to assess market opportunities of these secondary cells. Therefore we are focusing on a cell design that is "easy-to-fabricate" with a realistic material loading. Based on the multiannual experience in the development of lithium-sulfur batteries, we extend our activities to the field of magnesium sulfur-battery-development. In a first attempt S-C-cathodes with Sulfur content of 50 wt.% and 70 wt.% were evaluated with a 1.2 M Mg2+-salt electrolyte dissolved in a mixture of 2:1 by volume of bis(2-methoxyethyl)ether and an ionic liquid. The influence of the cathode composition was minimal at this early stage of development. Both types of batteries showed a similar discharge capacity of 600 mAh/g(Sulfur) in the first cycle. Furthermore different approaches for a working Mg-graphite-composite-anode are presented. Such composite-anodes were prepared via die-pressing and could only be obtained in specific composition. The obtained charge-discharge profiles showed remarkably well defined plateaus, which have not been obtained elsewhere, jet (see Figure 1). The preparation routine of the composite-anode was found to have the highest impact on the obtained performance. References [1] R. Mohtadi and F. Mizuno, “Magnesium batteries: Current state of the art, issues and future perspectives.,” Beilstein J. Nanotechnol., vol. 5, pp. 1291–311, Jan. 2014. [2] J. Muldoon, H. S. Kim, T. S. Arthur, G. D. Allred, J. Zajicek, J. G. Newman, A. E. Rodnyansky, A. G. Oliver, and W. C. Boggess, “Structure and compatibility of a magnesium electrolyte with a sulphur cathode.,” Nat. Commun., vol. 2, p. 427, Jan. 2011. [3] J. M. F. Z., Zhao-Karger, X. Zhao, D. Wang, T. Diemant, R. Behm, “Performance Improvement of Magnesium Sulfur Batteries with Modified Non-Nucleophilic Electrolytes,” Adv. Energy Mater., vol. 5, no. 3, p. 1401155, 2015. [4] T. D. Gregory, R. J. Hoffman, and R. C. Winterton, “Nonaqueous Electrochemistry of Magnesium Applications to Energy Storage,” J. Electrochem. Soc., vol. 137, no. 3, p. 775, 1990.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.