As drug development is extremely expensive, the identification of novel indications for in‐market drugs is financially attractive. Multiple algorithms are used to support such drug repurposing, but highly reliable methods combining simulation of intracellular networks and machine learning are currently not available. We developed an algorithm that simulates drug effects on the flow of information through protein–protein interaction networks, and used support vector machine to identify potentially effective drugs in our model disease, psoriasis. Using this method, we screened about 1,500 marketed and investigational substances, identified 51 drugs that were potentially effective, and selected three of them for experimental confirmation. All drugs inhibited tumor necrosis factor alpha‐induced nuclear factor kappa B activity in vitro, suggesting they might be effective for treating psoriasis in humans. Additionally, these drugs significantly inhibited imiquimod‐induced ear thickening and inflammation in the mouse model of the disease. All results suggest high prediction performance for the algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.